
www.manaraa.com

DIPLOMA THESIS

Charlie 2.0 - a multithreaded

Petri net analyzer

by Andreas Franzke

Andreas.Franzke@tu-cottbus.de

for the chair

Data Structures and Software Dependability

at the

Brandenburg University of Technology at Cottbus

Cottbus, September 30, 2009

www.manaraa.com

I hereby declare that I have written this document by myself without the help
of others and have only used the literature and software named in the references.

Andreas Franzke, Cottbus 30.09.2009

www.manaraa.com

Abstract

This thesis describes the actions performed to transform the existing
version of Charlie, a software tool to analyze Petri nets, into a better
usable and extendable software. It is the aim to clean up the structure
of classes and packets and create a basis for new extensions. Here, the
algorithms of the existing analyzers are not touched or optimized, only
the organization of the analyzers is overworked. Also the data structures
are not examined.

As a raw model for the new version, the prototype created in my study
assignment “Concept for redesigning Charlie 1.0” [AF2008] is used. The
new functionalities of the prototype are incorporated into the new version,
as there are the GUI generator for command line tools and the marking
editor.

The product of my work is a new version which guides the implementer
of new features and eases the integration. The structure of Charlie is now
clearer and better maintainable. The benefit for the user is the improved
usability.

The new version offers handling and managing of analysis threads,
a way to define deduction rules for Petri net properties and a textual
interface based on parameters to start analyses from a command line.

www.manaraa.com

Contents

I Analysis of the existing software and plans for the
reengineering 1

1 Introduction 1

2 Reengineering plan 3

2.1 Why reengineering became necessary? 3
2.2 What concrete actions have to be taken during this process? . . 4
2.3 The existing GUI . 5
2.4 The new GUI design . 6
2.5 Principles for the GUI design . 9
2.6 Show nets in snoopy . 9

3 Package and class analyses 10

3.1 Overview . 10
3.2 Relations between packages . 12
3.3 The new package structure . 14

II The rule - result system 16

4 Introduction to the rule system 16

4.1 A basic set of rules . 17

5 The software architecture for the result system 19

5.1 The original result system . 19
5.2 The result system in the prototype of Charlie 20
5.3 The extended rule-result system 21
5.4 Description of class Result . 22
5.5 Description of class Results . 24
5.6 Description of class ResultManager 26
5.7 Description of class Rule . 26
5.8 Description of class ExtendedRule 27

6 How the rule system operates 29

6.1 Access to the rule system . 29
6.2 How rules are defined . 32
6.3 Limitations . 34

III Software architecture for analyzers 35

www.manaraa.com

CONTENTS 5

7 Structure of the existing analyzer system 36

7.1 Examination of Charlie’s existing analyzers 36
7.2 Problematic issues . 42
7.3 Idea of the new analyzer system 43
7.4 Introduction to the new analyzer system 45
7.5 Charlie.analyzer.Analyzer - the basis for all analyzers 45
7.6 How options are passed - the class OptionSet 51
7.7 Example invariant options . 52
7.8 The OptionSet class in details . 54
7.9 Multi-stage analyses . 55
7.10 Implemented option sets . 56

8 Realized analyzers 57

9 AnalyzerManager - how analyses are invoked 58

9.1 How an analyzer is identified . 58
9.2 How an analysis is invoked . 59

10 Thread Manager - how analysis threads are handled 61

11 How to implement a derived analyzer 63

IV A textual interface for Charlie 67

12 The textual interface 67

12.1 Syntax of analyzer parameters and fix parameters 67
12.2 Sequential vs. parallel execution 68
12.3 Class structure of the textual interface 69
12.4 Examples . 70
12.5 Overview over the option sets and their parameters 71
12.6 Summary . 72

V Summary 74

VI Appendices 75

13 Appendix A - Utility classes 76

14 Appendix B 81

www.manaraa.com

List of Figures

1 Process of reengineering. 3
2 Charlie 1.0 start screen. 5
3 Main window in the new design. 7
4 Main window with module windows. 8
5 Package structure of Charlie (numbers in brackets = # of classes

in the package). 11
6 Package dependencies. 13
7 New class structure. 14
8 “Old” result system. 19
9 Results panel - net properties panel. 20
10 Net properties panel in Charlie prototype. 21
11 Results - rule system class diagram. 23
12 Result - rule -system. 30
13 A rule is applied. 31
14 Package and class structure of analyzers. 36
15 Idea of analyzer use. 44
16 Sequence diagram showing use of analyzers. 45
17 Class structure Charlie.analyzer. Analyzer with classes it de-

pends on. 47
18 Set of objects needed for an analyzer exemplified with Invariant-

Analyzer. 52
19 Invariant options dialog. 53
20 Class diagram Charlie.analyzer.OptionSet. 54
21 Hierarchy of option sets. 56
22 New class structure for analyzers. 57
23 Analyzer package structure with example. 57
24 Class diagram analyzer manager. 58
25 Thread manager class structure. 61
26 Thread manager frame. 62
27 Class structure for class Charlie.Charlie. 69

www.manaraa.com

List of Tables

1 class analysis Charlie.pn.Analyzer 37
2 class analysis Charlie.pn.DeadlockAnalyzer 38
3 class analysis Charlie.pn.TrapAnalyzer 38
4 class analysis Charlie.inv.InvAnalyzer 39
5 class analysis Charlie.inv.DependentSetAnalyzer 40
6 class analysis Charlie.rg.RGAnalyzer 41

www.manaraa.com

Part I

Analysis of the existing software

and plans for the reengineering

1 Introduction

What is Charlie? Charlie is a software, which performs several analyses
on Petri nets. It is able to determine certain properties of those nets. Charlie
is the product of the thesis from Martin Schwarick [MS2006]. It was firstly
created with few features and later extended by a few more. Since those features
and their integration were not initially planned the implementation had a large
impact on the program’s structure. The GUI elements were created as needed
and did not follow a repeating pattern or a global plan. So the use of the
program was not very comfortable. The inexperienced user was confronted with
unclear and inconsistent program behavior. When looking behind the GUI the
structure of the software was inconsistent in some parts and some features were
integrated, but not throughout the whole program. The class structure was
not prepared for future extensions. Furthermore the program was restricted to
only one analysis at a time. Especially with longer lasting analyses, like the
construction of a reachability graph, modern computers with more than one
processing core, are not used efficiently.

Then the further extension of the program became more and more prob-
lematic, also new features were wanted and the use should become more user
friendly. That’s were my study work started off. The requirements for a new
version were:

• A new extendable GUI interface which is able to integrate all existing
features in a consistent and convenient way.

• An editor to change the amount of tokens on a place and to use the
modified net with all analyses.

• A user interface to use command-line based external tools. Which works
without typing in the necessary parameters and their values by hand.
The interface should be extendable for further tools or changes in the
parameters.

So a prototype that incorporated those features and showed the new user
interface was created. The prototype proved it’s usability. The implemented
features showed the GUI concept. This prototype was chosen as the basis for
the final version. During the implementation ideas concerning the organization
of analyzers and modules were created.

The requirements for the final version were sometimes changed and extended.

1

www.manaraa.com

1 INTRODUCTION 2

Which aims should be reached?

• A concept for managing and controlling analysis threads.

• A rule system to show the effects of determined net properties. The derived
properties should be presented to the user. This rule system should be
easily editable and extendable.

• Integrate all features from the prototype and the existing Charlie version
into the final version.

• Each analysis can be started by using command-line parameters, without
displaying GUI elements.

These requirements seem to be quite simple and easy to integrate, but they lead
to fundamental changes in the source code and the class structure.

The analysis thread concept for example made large modifications necessary.
In the initial version analyses were sometimes threads, sometimes not. The an-
alyzers wrote all their output directly to the protocol, results were stored in a
global result set. Each analyzer could only be instantiated once. The final ver-
sion should be able to instantiate a type of analyzer more than once and manage
the parallel execution of analyzers. So results could not be stored in a global
object anymore, the output had to be captured and stored, until the analyzer
finishes. The access to several objects had to be coordinated. Furthermore, the
existing analyzers incorporated features, which do not necessarily belong to an
analyzer, like loading nets or returning properties of Petri nets.

In between further plans for extensions were made, certainly the integration
of those had to be simple.

So you see that almost every part of the software hat to be checked and
lots of them had to be modified. The only exception were the algorithms of the
analyzers and the data structures.

www.manaraa.com

2 REENGINEERING PLAN 3

Figure 1: Process of reengineering.

2 Reengineering plan

2.1 Why reengineering became necessary?

The software was developed by a single developer, next to his normal work.
Initially it was not intended to grow so big. So initially no concrete plans
existed which incorporated this growth. Today more extensions are planned
and the number of developers is planned to grow. A certain number of students
will work on modules which extend Charlie by new functionality. The initial
version is found to be not ready for these extensions.

Usually reengineering becomes necessary if: “Your software comes to a point
where extensions and repairs get more and more difficult and uncontrollable,
you will make yourself familiar with questions about software reconstruction...”
[BSB2008, p. 233]. Reengineering means three possible actions, which can be
used [BSB2008, p. 234]:

• reverse engineering

• refactoring

• forward engineering

In this case, all of them are used at different parts of the software.

Reverse engineering is used to get familiar with the programs structure
and the interactions and relations between all parts of the software. It means to
gain information from lower levels and to create a higher level of information.
Since both a running version and source code are available as documents for
reengineering, static and dynamic analyses of the program can be performed.
Because the program is driven by a graphical user interface the events within
the software are not always linear and program behavior must be determined

www.manaraa.com

2 REENGINEERING PLAN 4

by using both source code and the real program. By using those techniques a
good understanding of the program’s structure and behavior is created.

Refactoring operations transform information from one level to new infor-
mation on the same level, e.g. source code is modified and creates new source
code. Possible operations are removing variables, changing the code style or
moving methods from one class to another.

Forward engineering transforms the requirements for the new features
into source code and then into executable files.

In this case actions from of all of them need to be performed at different
levels of abstraction.

2.2 What concrete actions have to be taken during this

process?

• Get an understanding of the existing program and its structure.

• Identify possible problematic areas in the structure and the source code.

• Define goals for the new structure of the program.

• Define additional features for the new program version.

• Design a new structure that reflects the defined goals.

• Adapt the existing classes to the new structure.

• Define the requirements for the new features.

• Implement the new features.

What are the benefits of the refactoring? In the current state under-
standing and using Charlie is complicated. The extension is difficult since there
is no defined structure. The refactoring should therefore produce a usable ex-
tendable new program version, with a documented software architecture.

How to inspect the software? The only documents provided were the
source code files and binaries. So mainly static analysis and some dynamic
analysis is used to understand Charlie.

The book “Software Wartung” names some static methods for understanding
a software architecture:

• Analyze package structure, relations between packages [BSB2008, p. 219]
and their interconnections

• Analyze dependencies among classes (Which classes are used by a class?)
at least for the analyzer classes

www.manaraa.com

2 REENGINEERING PLAN 5

Figure 2: Charlie 1.0 start screen.

• Create a Dependency structure matrix [BSB2008, p.220] and analyze them.

Also the analysis of the source code helps to identify the behavior of the program.
Since the program has about 28000 lines of code [see output listing on

page 10] it is almost impossible to recover all of the behavior in an adequate
time. So I decided to to start over with the previously created prototype and
created a new package for the graphical user interface which got all of the new
features. If classes of the Charlie package were useful or necessary they can be
transferred to the new packages. I only used and modified classes which were
needed to perform the analysis. After finishing the implementation the class
structure is examined for unused classes, which are removed then.

2.3 The existing GUI

I will explain a few short examples, which give an insight into some problematic
aspects of the existing version. To visualize the differences between the versions,
take a look at the following pictures (Figure 2). This Figure shows the initial
state of Charlie after being started.

As you can see the user interface consists of a single frame with several
internal frames. The internal frames: controls and option’s relate to two things
that are not visible yet. The controls frame contains the buttons and checkboxes,
which control the reachability graph visualization frame. In the options window
the visualization part on the left side is also responsible for settings that relate
to the reachability graph visualization frame. The right part relates to options

www.manaraa.com

2 REENGINEERING PLAN 6

which control the construction of a reachability graph. The construction itself is
started by using the menu at the top of the frame. Within this simple example
several problematic aspects can be named, which collide with the “easy-to-use”
of the application. I will only list a few of them:

• Some controls are disabled some are not, although related to the same
thing.

• Why are controls visible when they cannot be used?

• The naming of titles is insufficient, e.g. construction or controls. What
exactly is constructed? What is controlled?

• The visualization options affect only newly created visualization frames,
not existing ones.

• The internal frames seem to be placed quite randomly.

Solutions for those issues could be the following:

• Place the visualization controls inside the controls frame.

• The controls frame only becomes visible, when a reachability graph visu-
alization frame is opened.

• The visualization options get a button labeled with “new visualization”.

• The construction options are placed inside a dialog window, which appears
if the user clicks construct RG in the analyze menu of the application.

• All titles are modified or replaced by more informative ones.

2.4 The new GUI design

During my study assignment [AF2008]ideas about the new look of Charlie were
created and discussed. The result of these talks was a GUI design that oriented
to the design of GIMP, an open source picture manipulation program [GIMP].
With some independent frames, a main frame with all tools and additional ones
that contain more options or visualize something. The user gets a simple and
clean interface which doesn’t confront him with an overwhelming number of
controls.

As we can see (Figure 4), the main window stays at the left side of the
screen. The visible GUI elements can be reduced by clicking onto the captions
of each sub dialog. The sub dialog for deadlock/trap computation is closed for
instance (Figure 3). Each module window can be closed without loosing its
contents. If the marking editor is not needed, then the window can be closed
and redisplayed if needed. The user gets full control of all windows. Options
and controls are now only displayed if the corresponding dialog or window is
visible. For example the controls for the reachability graph visualization now
only appear in the context of the visualization window.

www.manaraa.com

2 REENGINEERING PLAN 7

Figure 3: Main window in the new design.

www.manaraa.com

2 REENGINEERING PLAN 8

Figure 4: Main window with module windows.

www.manaraa.com

2 REENGINEERING PLAN 9

2.5 Principles for the GUI design

The book [IW1998] describes a lot of principles that should be followed if a user
interface is designed. I tried to consider most of them. As the design shows,
all dialogs are made up similar. Each dialog uses an one- or two-column layout
and aligns the controls to the left. Buttons are rather big, but so they can be
easily hit by the mouse pointer. The big compute button is repeated through
the dialogs and the user soon expects a button like this within every dialog in
the main window. The old design didn’t care for alignment of frames or dialogs.

Wherever possible the following principles were followed:

• Alignment - The layout manager TableLayout [TableLayout] is used in-
stead of the built in ones.

• Hotkeys - Within the menus each menu item should be reachable by press-
ing keys on the keyboard.

• Tooltips - A description is added for almost every GUI element.

• Tabs are used when possible instead of multiple frames.

• Multiple ways of interacting with GUI elements. When possible mouse or
keyboard can be used (e.g. spinner or slider buttons use the mouse wheel
and the mouse pointer).

• Colors are only used where necessary in order not to create a colorful
distracting interface, but used where reasonable.

• Meaningful hints and question dialogs, if something did not work properly
or finished, so the user is informed about the state of the program.

• Hiding of elements is possible if the user does not need them currently.

Realizing these points created a usable interface for the user.

2.6 Show nets in snoopy

A small but very useful feature is the menu “show” in the main window, which
opens the Petri net editor Snoopy [SNOOPY] with the currently loaded net. Of
course Snoopy has to be installed before.

If the executable is not found at the standard place the user can select the
new location, this is stored in the properties of the program and remembered
the next time Charlie is started.

So the user can open both the editor and the analyzer, apply changes in the
editor and press reload in Charlie and the changes can immediately be examined.

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 10

3 Package and class analyses

3.1 Overview

At first an overview about the packages and classes and the size of Charlie is
created. The sizes of packages and the number of classes is determined to get
an overview over the structure.

Here are some facts, which will later be compared to the final version:

• 13 (sub-)packages

• 237 classes

• the tool SLOCcount [SLOCcount] counted 28324 lines of source code

SLOC Directory SLOC−by−Language (Sorted)
7048 pn java=7048
4547 gui java=4547
3703 ds java=3703
3530 l t l java=3530
2778 c t l java=2778
2402 rg java=2402
1585 v i s java=1585
1312 f i l t e r java=1312
1299 inv java=1299
120 dtp java=120
Total s grouped by language (dominant language f i r s t) :
java : 28324 (100.00%)
Total Phys i ca l Source Lines o f Code (SLOC) =

28 ,324
Development E f f o r t Estimate , Person−Years (Person−Months) =

6.70 (80 . 35)
(Bas ic COCOMO model , Person−Months = 2.4 ∗ (KSLOC∗∗1 .05))

Schedule Estimate , Years (Months) = 1.10
(13 . 24)

(Bas ic COCOMO model , Months = 2.5 ∗ (person−months ∗∗0 .38))
Estimated Average Number o f Developers (E f f o r t / Schedule) =

6 .07
Total Estimated Cost to Develop = $

904 ,490
(average s a l a ry = $56 ,286/ year , overhead = 2 . 40) .
generated us ing David A. Wheeler ’ s ’SLOCCount ’

As we can see the structure of packages is not very complicated there are
only 13 packages (Figure 5) . But if you look at the number of classes the range
is quite big. The smallest package has only 1 class and the largest 59 classes.

From this analysis the following questions arise:

• Is the package dtp necessary? Can the class be moved into an other
package?

• The packages gui, ltl, pn, rg, vis contain at least 22 classes. Is it useful to
split those packages into smaller ones?

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 11

Figure 5: Package structure of Charlie (numbers in brackets = # of classes in
the package).

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 12

• Is it possible to concentrate only on relevant packages and leave out pack-
ages which contain classes that are not needed anymore (Which will prob-
ably be the case with the gui package)?

So the static analysis of the existing packages is a good source of information,
where problems might occur during the reengineering process.

3.2 Relations between packages

Then the relations between packages were examined. This gives an insight
in the dependencies between packages. If there are strong dependencies this
might indicate a bad-smells. If many classes in one package use many classes
in another package, changes in classes might affect a lot of other classes. A
pattern like “facade” [BSB2008, p. 45] that manages the interaction between
packages and the access to objects would decrease problems if the program
needs to be changed or extended (Figure 6). The number next to the arrows
are the numbers of classes the package depends on in the other package. High
numbers and many arrows hint to packages which are hard to modify since a
modification can affect many classes in other packages. Not only modification is
more problematic, testing gets also difficult. Because of the many dependencies
a module tests is hardly impossible since many classes from outside the module
influence the behavior. Also the use may be affected [BSB2008, p. 218-219].

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 13

Figure 6: Package dependencies.

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 14

As we can see(Figure 6) the three biggest packages also have the most depen-
dencies. The packages pn, gui and rg are strongly connected to other packages.
The package gui is not considered anymore since almost all of its classes get
obsolete with the new user interface. The package pn should only hold the data
classes connected with a Petri net. But this package also holds analyzers, input
and output classes. There are also classes which are never used in one of the
classes inside the package or which are never used at all.

3.3 The new package structure

Figure 7: New class structure.

Mostly all GUI related classes are moved to the new big GUI package. The
analyzers are placed inside the sub package Charlie.analyzer. This package
contains more sub packages, which are thematically sorted.

Now the Charlie package contains:

• 186 classes (before 237, -22,5%)

The new package GUI contains:

• 97 classes

Together there are 283 classes (+ 19,4%).
The lines of code analysis of the final version, with SLOCcount produced

the following result (the output was slightly modified and shortened):

SLOC Direc tory SLOC−by−Language (Sorted) (Before)
6674 pn java=6674 (7048)
3681 ds java=3681 (3703)
3517 l t l java=3517 (3530)
3433 ana ly ze r java=3433 (−−−)
2773 c t l java=2773 (2778)
1508 v i s java=1597 (1585)

www.manaraa.com

3 PACKAGE AND CLASS ANALYSES 15

1432 rg java=1432 (2402)
1312 f i l t e r java=1312 (1312)
258 top_dir java=258 (−−−)
120 dtp java=120 (120)
−−−

24797 Char l i e java=24797 (28324)

SLOC Direc tory SLOC−by−Language (Sorted)
4640 t o o l g u i java=4640
2426 rggu i java=2426
1816 app_components java=1816
1786 mark inged itor2 java=1786
748 u t i l java=963
698 d i a l og java=698
685 top_dir java=685
621 setup java=621
161 threadmanager java=367
103 app_actions java=103
84 debug java=84
−−−

14189 GUI java=14189

Totals grouped by language (dominant language f i r s t) : java :
38986 (100.00%)

Total Phys i ca l Source Lines o f Code (SLOC)
= 38 ,986

Development E f f o r t Estimate , Person−Years (Person−Months)
= 9 .36 (112 . 37)

(Bas ic COCOMO model , Person−Months = 2.4 ∗ (KSLOC∗∗1 .05))
Schedule Estimate , Years (Months)

= 1 .25 (15 . 04)
(Bas ic COCOMO model , Months = 2.5 ∗ (person−months ∗∗0 .38))
Estimated Average Number o f Deve lopers (E f f o r t / Schedule)

= 7 .47
Total Estimated Cost to Develop

= $ 1 ,265 ,015
(average s a l a r y = $56 ,286/ year , overhead = 2 . 40) .
" generated us ing David A. Wheeler ’ s ’SLOCCount ’ . "

As we can see the lines of code in package Charlie dropped by about 3500
lines. The new GUI package adds more than 14000 lines. The new user interface
shows more complex behavior than the old one. Some of the old packages are
rather unmodified, perhaps some lines are changed if the use of a class that is
replaced has to be modified. The lines of code increased by about 40%, while
the class number increased only by 19,4%, so obviously more complex classes
are added to the program.

www.manaraa.com

16

Part II

The rule - result system

4 Introduction to the rule system

One task of this thesis is to create a system that allows the definition of “rules”
and their application to Petri nets. Why that? In the field of Petri nets a lot of
properties can be determined, often in different ways. Then the determination of
one or a set of properties allows conclusions about the values of other properties.
So by a certain set of properties other properties may be deducted by rules. For
teaching purposes it is helpful if students get informed about those rules and
their application to a Petri net. The learning effect increases if the textual
representation of a rule and its application to the properties of the net appears
in the analysis protocol. So the following requirements for the rule system were
established:

• Rules can be defined inside the source code inside a special class. The
definition of a rule should be simple and intuitive. The set of rules should
be easily extendable.

• Each rule should have a description, which illustrates what properties are
necessary and which will be applied.

• A simple way to apply the defined rules to a set of existing results.

• A basic set of well-known rules, which are maybe already implemented by
Charlie.

What benefits can we expect by using this rule system?

In the previous version the rules were implicitly applied by Charlie.pn.Analyzer
or Charlie.rg.RGAnalyzer. Each of those analyzers is able to determine a rather
small set of properties directly and deducts possible further properties directly
in its source code. This implies knowledge of almost all properties inside each
analyzer class. Each class determined properties which did not directly belong
to its direct property set and applied properties which also did not belong to
this set. Also if there are different ways to determine a certain property all
the deduction rules have to be implemented in different analyzers or each an-
alyzer needs deep knowledge of other analyzers. In the previous version the
class RGAnalyzer made intensive use of methods inside class Analyzer, which
was designed to mainly determine structural properties. This resulted in a mess
of if ... then structures and method calls for properties. Often properties are
determined by this method calls, not by the analysis itself. The understanding
and extension of these structures is very inefficient and difficult. The likelihood
of making mistakes while implementing extensions to this structure is very high.
A further problem is that the rules are hidden inside the source code and have

www.manaraa.com

4 INTRODUCTION TO THE RULE SYSTEM 17

to identified manually. Also rules are scrambled, which means that an if con-
struct checks a certain property and inside the { } brackets other properties are
checked by further if constructs. So several rules are checked simultaneously
and separation is only possible by analyzing the source code.

The rule system offers the possibility to simplify almost each analyzer. Each
one only determines its special set of results and returns its values. The com-
puted set of properties is then merged with the results that have already been
evaluated. Together with the new system for analyzers the complexity of ana-
lyzers is significantly reduced. Then the rule system looks for rules that can be
applied to the complete result set. The analyzers can now work independently
from each other, which simplifies or even eliminates the dependencies among
different analyzers.

The result is a clear separation of analyzers and rules, a simple system of
defining rules and an easy way of applying rules to sets of properties.

4.1 A basic set of rules

Before creating an idea of the rule system and its components possible rules have
to be found and examined. The examination looks at the values of properties
and the types of those values, then which conclusions are drawn. The documents
from the lecture about Petri nets at the chair offer several rules.

Rule1 live & bounded => strongly connected

Rule2 conservative => bounded

Rule3 covered by P-invariants => bounded

Rule4 not covered by T-invariants => not live

Rule5 live & bounded => covered by T-invariants

Rule6 not covered by T-invariants & bounded => not live

Rule 1-6 source: [MH2007, page 8]

Rule7 net class == state machine => conservative & bounded

Rule8 state machine & strongly connected & at least one token => live &
bounded & reversible

Rule9 state machine & strongly connected & exactly one token => live &
safe & reversible

Rule 7-9 source: [MH2007, page 11]

Rule10 net class == marked graph => dynamically conflict free (& covered
by P-invariants)

Rule11 marked graph & strongly connected & each elementary circle con-
tains a token => live & bounded & reversible

www.manaraa.com

4 INTRODUCTION TO THE RULE SYSTEM 18

Rule12 marked graph & strongly connected & each elementary circle con-
tains exactly one token => live & safe & reversible

Rule 10-12 source: [MH2007, page 12]

Rule13 extended free choice & deadlock-trap-property => live

Rule14 extended free choice & ! deadlock-trap-property => not live

Rule 13,14 source:[MH2007, page 14]

Rule15 extended simple & deadlock-trap-property => live

Rule 15 source: [MH2007, page 15]

Rule16 deadlock-trap-property & homogeneous & non-blocking multiplicity
=> not dead states (not DSt)

Rule 16 source: [MH2007, page 18]
The following additional rules are taken from the source code directly by

analyzing.

Rule17 deadlock-trap-property & homogeneous & non-blocking-multiplicity
& not extended simple => live
([Charlie] Charlie.pn.Analyzer: lines 443->449)

Rule18 not deadlock-trap-property& (free choice or extendedFreeChoice or
state machine or marked graph) => not live
([Charlie] Charlie.pn.Analyzer: lines 450->453)

Rule19 covered by P-invariants => structurally bounded & bounded
([Charlie] Charlie.pn.Analyzer: lines 217 - 224)

Rule20 transitions without preplace (Ft0) => not bounded & not struc-
turally bounded & not safe
([Charlie] Charlie.pn.Analyzer :lines 53 - 57)

Rule21 conservative => bounded & structurally bounded
([Charlie] Charlie.pn.Analyzer: lines 76 - 79)

Rule22 state machine => bounded & structurally bounded
([Charlie] Charlie.pn.Analyzer: lines 115 - 118)

(see Appendix B, page 81)

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 19

Figure 8: “Old” result system.

5 The software architecture for the result system

5.1 The original result system

Before introducing the new rule-result-system I want to describe the original
architecture of storing results. Martin Schwarick [MS2006] initially introduced
a simple system. It consisted of two classes (Figure 8):

Results The storage of result objects, which were placed inside a two-dimen-
sional array. For identification of single results through static int
values were used as indices. Inside the array mainly result objects
are stored, but storage of other objects is also possible.

Result An object that encapsulates a value object and returns a string
depending on the value and type of the stored object.

In the previous version of Charlie results are only stored within Charlie.pn.-
Analyzer. Only two classes were responsible for setting property values: Char-
lie.pn.Analyzer and Charlie.rg.RGAnalyzer.
The results are retrieved by calling Analyzer.getResultHTMLString(), which

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 20

Figure 9: Results panel - net properties panel.

then called Results.toHTMLString(). The single results were presented in a
HTML-table within an internal frame of the user interface (Figure 9).

Disadvantages of the existing retrieval and presentation of results:

• The simple textual presentation is not very comfortable to read.

• Only the whole set is displayed and updated. If a single result is set or
changed by an analysis, the user cannot recognize which one was set (ex-
cept for looking inside the output of the analyzer in the protocol window).

• The results are retrieved by using different analyzers, like InvAnalyzer or
DeadlockAnalyzer then the result of these analyzers is evaluated in char-
lie.pn.Analyzer and charlie.rg.RGAnalyzer. So all analyzers depend on
each other somehow, which makes changes difficult and offers no consis-
tent way of evaluating results. Moreover knowledge of different topics is
necessary in one analyzer. Thematic separation is not achieved.

• Because of the missing rule system, the rules had to be build manually by
using complex if-structures. The appliance of rules is not presented to the
user so the learning effect is reduced.

• There was only one central Results-object located in Charlie.pn.Analyzer
which was updated every time an analysis finished. Safe concurrent access
to this object was not possible.

5.2 The result system in the prototype of Charlie

My former assignment offered a new way to present the properties of the Petri
net (Figure 10). The new window uses colors to represent the current state of
a result. In the basic setting light green indicates that a result is set to true,

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 21

Figure 10: Net properties panel in Charlie prototype.

which formerly was the character ’Y’. Red indicates a property that was set to
the value false or ’N’. The colors may be adapted to the users needs, because
red might be misunderstood as a bad value, but is not necessarily bad. For
example the absence of dead states, which would be indicated by a red colored
box, but in fact the absence is seen as a good fact. Furthermore tooltips are
used to display more information on the property. This can be easily extended
to longer descriptions or definitions for each property. So students don’t have
to switch between the program and a book to look up definitions each time
they need them. Next to colors, strings or integer values can be used to display
the value of a property. The value is displayed next to the abbreviation of the
property. Unset properties are grayed out and can be easily identified as not
determined.

The prototype concentrated mainly on the design of a new graphical user
interface, so the way new results are determined and collected was not changed
very much. Like the original version the prototype collects all properties in
Charlie.pn.Analyzer, then the Results object is passed to GUI.App and the
NetPropertiesDialog interprets and presents the values.

5.3 The extended rule-result system

The new system introduces some fundamental changes to the way results are
collected and displayed. The new system should meet the following require-
ments.

• Each analyzer should only set properties, which are determined directly
by it. No deductions are done inside the analyzer.

• Each analyzer has to set results independently from other analyzers..

• All result sets are passed to a central manager which is responsible for
presentation and storage.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 22

• The user can access each single result set, to make a connection to the
analyzer which produced the results.

• All deductions (rules) are written in a simple intuitive way and stored in
a central managing object.

• The deductions can be easily applied to a set of properties.

• If a deduction is applied, the user is informed about this via a textual
output to the protocol window.

• The rules for deduction must allow the use of ordering relations like bigger
than (’>’), lower than (’<’), equal (’==’), not equal (’ !=’), greater or
equal (’>=’) and lower or equal (’<=’).

• There must be a possibility to extend the rule system by automatically
called checks, which need further implementation.

In the previous version there was only one current set of properties. Now there is
a list of property sets located in the NetPropertiesDialog object, which stores the
results of each analysis. So the result sets of each analyzer are distinguishable.
This enables the user to see what properties have been set by a special analyzer.
The following Figure (Figure 11) shows the classes which store results and rules.

5.4 Description of class Result

Member-variables The original variable val of the type Object is en-
hanced by static integer values which represent the possible types of the value
object. The method getType() returns an integer value depending on the class
type stored in val. The presentation dialog uses the type to decide which way
to choose in order to display the result properly.

Methods The old version only had a constructor and a method to return
the value of the Result object as String representation. The new version needed
extensions because a Result object needs more functionality than only returning
a string representation. So the following methods have been added.

copy() Tries to create a copy of the Result object. If the object is a Boolean,
Integer or String type the created copy is a deep copy with no copied
references to the old object. Since the Result object can store any
other object too, the copy() method of the object is used in this case
and a deep copy cannot be guaranteed.

equals(Result) Compares the Result object to the provided parameter and re-
turns true if the values are equal. Simulates the ’==’ relation. If
the type is equal then the containing value is compared.

getType() Returns the type of the val object. In case of a Boolean, Integer or
String object, the constants BOOLEAN, INTEGER, STRING are
used. All other types are represented by the NO_TYPE value.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 23

Figure 11: Results - rule system class diagram.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 24

getValue() Returns a String representation of the contained val object.

getValueObject() Returns the val object itself for further evaluation.

gt(Result) Simulates the greater than relation and returns true if the value of
the class is greater than the provided parameter.

lt(Result) Simulates the lower than relation and returns true if the value of the
class is lower than the provided parameter.

gteq(Result) Simulates the greater-than or equal relation and returns true if the
value of the class is equal or greater than the provided parameter.

lteq(Result) Simulates the lower-than or equal relation and returns true if the
value of the class is equal or lower than the provided parameter.

notequals(Result) Simulates the not equal relation and returns true if the values
of the class and the parameter are different.

The four methods are used by the rules to test if two results are in the defined
relation. The methods gt(), lt(), gteq() and lteq() can only be used on Result
objects with Integer values, other types will always return false. Comparing
String or Boolean types wouldn’t make much sense. If larger types than Integer
are needed, this methods can be easily extended to larger or smaller types like
Long or Short.

toString() This method calls toString on the val object inside the class, this
is different from the getResult() method, because getResult() inter-
prets the value of the val object and returns a string. In case of a
Boolean value set to true the string “ Y “ is returned. The method
toString() would return “true”.

5.5 Description of class Results

This class also needed extensions, because of the new Analyzer system and
the rule system. For example a rule needs a way to deliver its output to the
protocol window, without exactly knowing the object (because of the separation
of software layers). I treated the output of an analyzer and the output of a
rule as part of the result set produced by the analyzer or the rule. So each
Results object owns a StringBuffer object that collects all output. The initially
implemented arrays for the Result objects are not touched and so the storage
remains unchanged.

Member variables

output A StringBuffer that collects all output attached by an analyzer or
a rule. If Analyzer.setOutput(String s) is called, then the provided
string is appended to the output StringBuffer.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 25

results[] An array of Result objects, which stores the values of the properties.

props[] An array of String objects, that is initialized with the abbreviations
of the net properties. The properties array is a static variable, so it
is accessible without the need to instantiate a Results object. The
method getResultString(index) provides access to the array from
outside the object.

tooltips[] An array of String objects, that is initialized with short descriptions
of the net properties. Like the props array the tooltips array is also
static and therefore initialized for all Results objects. It is accessible
from outside the object via getTooltipText(index).

Methods

Results() The constructor initializes the results array with null values.

addResult() Using the provided indexs the Result object is stored in the results
array at the index position.

appendOutput() A String is appended to the output StringBuffer object in-
cluding a newline character at the end.

getOutput() Returns the collected output as a String object.

getResult() Returns the Result object at the specified index position.

getResultString() Uses the props array to get the abbreviation of the net prop-
erty. The method is static so the abbreviations are accessible with-
out instantiating a Results object. Furthermore the array uses mem-
ory only once for all Results objects.

getTooltipText() The tooltips array is used to return the short description for
a property and is also static for easy access.

isEmpty() This method returns true if there is no property set in the results
array, if a result is different from “null” then false is returned. This
method is used to prevent unnecessary checks.

mergeWith() The rules itself contain two Results objects which contain the
preconditions and postconditions of the rule. If a rule is applied to
a result set, the set has to be merged with the postconditions of
the rule. This method copies the result values which are set in the
postconditions object to the provided result set.

toString() The result abbreviations and the values of the results are returned as
String object. The previous version of this method always returned
all results and their values even if they are not set, this version prints
only results which are set.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 26

5.6 Description of class ResultManager

The ResultManager is responsible for initializing and administrating all rules.
The class has several methods which are named rule001, rule002 etc. Each
method initializes a single rule and adds this rule to the list.

Member variables

ruleList Here all rules are stored. The list is declared as static, which prevents
multiple initializations.

initialized The rules can be initialized by calling the constructor or calling
ResultManager.initialize() directly. If the initialization is forgotten,
the first access to ResultManager.applyRules(Result r) checks if the
rules have already been initialized, if not, initialized is called. After
initialization the value of initialized is set to “true”.

Methods

applyRules This method applies all rules if their corresponding preconditions
are fulfilled by the provided result set. A detailed description about
the way rules are applied follows this part.

checkApplyableRules Before rules are applied, a check for rules that can be
applied is performed. The method returns the number of rules which
can be applied.

initialize If the ResultManager is not initialized, this method calls all the
rule001(), rule002() etc. methods to fill the rule list with initialized
rules.

5.7 Description of class Rule

An instance of the class Rule holds all necessary information on the precondi-
tions and postconditions as well as a textual description of the rule.

Member variables

preResults The result set that contains the values of the results that are neces-
sary to apply the rule.

postResults This result set contains the values of the results that will be set if
the rule is applied.

relations[] An array of int values indicating the relation in which the precondi-
tions have to be if the rule can be applied.

description The textual representation of the rule. Here more information on
the rule can be stored.

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 27

Methods

Rule The constructor without parameters sets up an empty rule, the other
one initializes the rule by predefined relations, conditions and post-
conditions.

addPostResult The addPostResult methods use the index to place the Result
object in the postResults object. The methods with the Boolean
and int parameter provide a more comfortable definition, since the
creation of Boolean and Integer objects is done by the method and
therefore the user is freed from this task.

addPreResult Together with the Result object an int value representing the
relationship in which the precondition is to the corresponding result
from the analyzer.

applyRule The provided Results parameter is merged with the postResults re-
sult set. The description of the rule is appended to the output of
the Results parameter.

checkPostConditions This private method returns true if all the postconditions
are set in the provided Results object. The value of each single result
is not checked, what matters is that the result is set, not its value.
If one postcondition is not set then false is returned.

checkPreConditions Unlike checkPostConditions this method returns true only
if all the results are set and if their value relates to the value of the
parameter result in the way it is defined in the relations array. A
detailed example follows.

checkRule Before a rule is applied, checkRule is called. This method returns
true if all preconditions are fulfilled and not all postconditions are
set.

getDescription Returns the description stored in the Rule object.

setDescription Sets the provided String object as description for the rule.

5.8 Description of class ExtendedRule

If additional information on a net are necessary to apply a rule, this class
can be used to derive a special class. The derived class must implement the
method checkSpecialProperties which takes additional analyses to decide if
the rule can be applied. The ResultManager detects an ExtendedRule and
calls checkSpecialProperties on the provided object parameter from ResultMan-
ager.applyRules(Results results, Object object).

A possible use for a class of the type ExtendedRule would be the Rule 11:
MG & SC & each elementary circle contains a token => live & bounded &
reversible. Where the part “each elementary circle contains a token” cannot be

www.manaraa.com

5 THE SOFTWARE ARCHITECTURE FOR THE RESULT SYSTEM 28

covered by a net property and needs further checks. That’s why the object is
needed.

Methods

initialize This method is declared as abstract and the implementing class can
place operations there which setup the class instance. The construc-
tor of ExtendedRule makes a call to initialize.

checkSpecialProperties As mentioned above this method performs special checks
on the provided object. Calls to external objects or analysis tools
may be taken to acquire the result for the special property.

checkRule An overridden version of Rule.checkRule() , which uses an extra pa-
rameter that is passed to checkSpecialProperties. Here the precon-
ditions and postconditions are checked as well as the call to check-
SpecialProperties is made to ensure this rule can be applied.

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 29

6 How the rule system operates

This part describes the way the implemented rule system is accessed and used,
how rules are defined and its limitations.

6.1 Access to the rule system

The access is as easy as possible. The only step that is to be taken is a call to
Charlie.pn.ResultManager.applyRules(Results results). Since the Result Man-
ager’s methods are declared as static, no instance of ResultManager has to be
created or held somewhere in the calling class. The ResultManager will then
return the result set with the applied rules. The returned result set will contain
the values for the newly set properties as well as the output generated by each
rule. The output may be displayed in a dialog or printed to the console. No
more steps need to be taken.

Possible Problems

But there are two possible problems when applying rules

1. The sequence of the rules in the list may have an influence on the ability
of rules to be applied.

2. There may be circles in the defined set of rules.

The sequence in which rules are inserted in the rule list is quite random and
depends on the implementer. Even changes in the sequence are possible, if new
rules are added in later extensions. So the problem is that an imaginary Rule
A can only be applied if Rule B sets its postconditions so that all preconditions
of Rule A are fulfilled. In this case a second run through the rules with the
necessary checks has to be performed. Then Rule A can be applied and will
be applied. The Question is when to stop checking for applicable rules. Lets
adhere that the ResultManager has to check several times if a rule of the rule
list can be applied, since the result set may change every run.

The first possible solution would be to track the changes in the result set and
if no change has occurred, the loop can be left. Another solution also addresses
the second problem and is therefore favored. The question for the ResultMan-
ager is: “Can at least one rule be applied?”. If so, apply the rule(s), if not,
leave and return the result set. To prevent endless loops, the check for ability
to be applied has to consider both preconditions and postconditions. Normally
it seems that the rule can be applied, if its preconditions are fulfilled. But once
they are set, the rule can always be applied, no matter if it has already been ap-
plied or not. So a check for postconditions is performed too, if all postconditions
are set, the rule has been applied or the results have been determined through
another way. I want to emphasize that all of the postconditions have to be set, if
only one is missing the method returns false. In case all postconditions are set,
true is returned. This means a rule can only be applied, if checkPreConditions()
returns true and checkPostConditions returns false.

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 30

Figure 12: Result - rule -system.

The test in checkPostConditions does not consider the value of the postcon-
dition in the provided Results object, what matters is that the corresponding
result is different from null, which means it has been already set. So another
possible source of problems is eliminated. The user is able to define the follow-
ing rules A: b => !c and B: b => c. If c is not set the first run will apply rule
A, then the second run rule B can be applied, because the value of c is different
from the defined postcondition (c != !c), so rule B can be applied, then rule A
is applicable and so on. That’s why the check for the value of the postcondi-
tions is not performed. If a property is set to a value it should be impossible
to determine a different value as valid to, e.g. a net cannot be considered to
be bounded and to be unbounded at the same time. If so, then a rule or an
analyzer seem to produce wrong results.

The following Figure 12 gives an insight how the results are handled and
rules are applied.

After invariant computation finished, ResultManager checked for rules and
presents a dialog which asks if the rule should be applied to the current result
set.

Looking at the net properties dialog at the bottom of the frame, additional
controls allow to switch through the results each analyzer returned. The last
result set is always the complete set of results.

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 31

Figure 13: A rule is applied.

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 32

6.2 How rules are defined

We decided to place the definition of rules directly inside the source code. Rules
are rather static and do no change over time, they are complemented from time
to time as new properties are introduced or new analyzers are integrated. This
means that changes occur very seldom and might therefore be applied direct to
the source code. Defining rules using a text or XML file would mean a lot more
management and because of the few changes this possibility is not chosen.

There are two ways rules can be defined. The first way is to use addPreCon-
dition(), addPostCondition() and setDescription on a newly created Rule object
to define a rule. The second way uses class inheritance to create a new class.
The class ExtendedRule is an abstract basis for this new class. The derived
class has to implement at least checkSpecialProperties() and optionally initial-
ize() to perform a check. Initialize() should be used to set the preconditions
and postconditions, and the description. The method checkSpecialProperties()
on the other hand should be used to acquire data on the analyzed object that
has not been acquired by an analyzer and is only needed for the evaluation of
this rule. So if the special properties can be determined without longer lasting
analyses the necessary actions should be placed here. When consequently used,
a side effect of this is that the original net class can be kept smaller and simpler.
Normally you would introduce a new method in the class e.g. PlaceTransition-
Net to determine that ’each elementary circle contains at least one token’ (Rule
11). This method is probably only needed together with the rule. So the rule
system allows the separation of special methods and the analyzed object.

Here is an example for defining a rule in the first way using method from
the class Rule.

private static void ru l e001 () {
// LIV & BND => SC
Rule r = new Rule () ;
r . addPreResult (Resu l t s . L , Rule .EQ, true) ;
r . addPreResult (Resu l t s .B, Rule .EQ, true) ;
r . addPostResult (Resu l t s . SC, true) ;
r . s e tDe s c r i p t i on (" the␣net ␣ i s ␣ l i v e ␣&␣bounded_

␣␣␣␣ ␣␣␣␣=>␣ the ␣net ␣ i s ␣ s t r ong l y ␣ connected \n␣LIV␣&␣BND␣=>␣SC\n")
;
r u l eL i s t . add (r) ;

}

As you can see the rule live & bounded => strongly connected is defined.
After the new result class is created, addPreResult is used to set the precondi-
tions for this rule. So the results with the index Results.L and Results.B are set
to true. Because the check for applicability needs a relation, the second param-
eter is set to Rule.EQ, which means that the tested result set should have the
same values set for the properties defined in the preconditions. Alternatively
the other relation values (GT, LT, GTEQ,LTEQ,NEQ) can be used to define a
relation. The relation always works the following way: precondition property
<‌<relation>‌> tested property, e.g. the value for live in preconditions equals

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 33

the value for live in the tested result set. This is only relevant for integer based
values and GT, LT, GTEQ and LTEQ relations, since EQ and NEQ work in
both directions.

After adding the preconditions the postcondition is set. In this case the net
is considered to be strongly connected, so the result at index Results.SC is set
to true. After adding a description to the rule using setDescription(), the rule
is added to the ruleList.

If another rule is to be added this way, a new method with the modifier
static has to be implemented. The naming is up to the implementer, I chose a
consecutive numbering, but this is not a must. The static modifier is necessary
to be accessed by initialize or applyRules since they are declared static, too.

The following example illustrates the definition of an extended rule.

/∗∗ method ru l e012 from ResultManager . java ∗/

private static void ru l e012 () {
// MG & SC & each elem . c i r c l e
// con ta ins at l e a s t one token => LIVE & BND & REV
// see ru l e011
r u l eL i s t . add (new Rule012 ()) ;

}

The method has to instantiate an object of class Rule012 and add it to the
rule list. In this case there is nothing more to do in ResultManager.

The implementation of Rule012 concentrates on two methods: initialize and
checkSpecialProperties. In initialize() the common precondition and postcon-
ditions are set, as well as the description. Inside checkSpecialProperties the
correctness of the provided object is checked and then the analysis is performed.
Depending on the analysis result true or false is returned. The check for the
correct class type should be mandatory inside checkSpecialProperties, otherwise
unexpected exceptions may be thrown by the virtual machine.

/∗∗ implementat ion o f extended Rule ∗/
package Char l i e . pn . r u l e s ;
import Char l i e . pn . ∗ ;
public class Rule012 extends ExtendedRule{
PlaceTrans it i onNet pn = null ;

public void i n i t i a l i z e () {
addPreResult (Resu l t s .NC, Rule .EQ, "MG") ;
addPreResult (Resu l t s . SC, Rule .EQ, true) ;
addPostResult (Resu l t s . L , true) ; // l i v e
addPostResult (Resu l t s .B, true) ; // bounded
addPostResult (Resu l t s .R, true) ; // r e v e r s i b l e
s e tDe s c r i p t i on ("net−c l a s s : ␣marked␣graph ␣and␣ s t r on l gy ␣

connected ␣and␣each␣ elementary ␣ c i r c l e ␣ conta in s ␣ at ␣
l e a s t ␣one␣ token ␣=>␣ l i v e , ␣bounded , ␣ r e v e r s i b l e ") ;

}

www.manaraa.com

6 HOW THE RULE SYSTEM OPERATES 34

public boolean ch e ckSp e c i a lP rop e r t i e s (Object ob j e c t) {
i f (ob j e c t instanceof PlaceTrans it i onNet) {

this . pn = (PlaceTrans it ionNet) ob j e c t ;
/∗ do some opera t i ons on the provided o b j e c t ∗/
return true ; // or f a l s e

} else{
return fa l se ;

}
}

Both methods are called automatically, so the programmer is freed from addi-
tional management.

At this time the only point where ResultManager.applyRules() is called is
NetPropertiesDialog.update(). The local PlaceTransitionNet object is passed
as parameter. But what if the analysis of another object is needed? If there
are ExtendedRules, which need e.g. an object of the type Charlie.rg.RGraph, to
perform an analysis, the ResultManager can be called by the class that initiated
the creation of the (in this case) reachability graph. When the corresponding
analyzer returns from its analysis an the initiator is informed about that, the
reachability graph object is returned (inside the option set) to the initiator.
Then the initiator can call ResultManager.applyRules() with the result object
of the analysis. The received results should be merged with the results in the
option set.

6.3 Limitations

One limitation of the rule system is that all preconditions must fulfill, an “OR”-
relation between two properties is not allowed. In case this relation is needed
the OR-rule can be substituted by several rules covering all possible cases. The
consequence of introducing “OR” relations between preconditions would lead
to a complex system of interpreting parameters or parsing orders. This would
have impact on the simplicity and usability of the rule system. Since changes
to the system are rather seldom, the user would have to learn a complex system
of producing rules, which the user probably forgets until the next time this
knowledge is needed. So the simpler interface is favored.

www.manaraa.com

35

Part III

Software architecture for analyzers

Charlie now covers a set of analyses, which can be performed on Petri nets.
There are the following analyses:

• coverability graph / reachability graph construction

• invariant computation (place- and transition-invariants)

• dependent set(s) computation

• deadlock(s) computation

• trap(s) computation

• shortest path computation

• ctl and ltl model checker

These analyzers are arranged the way they were developed. In the former ver-
sion, is not possible to access them in a consistent way.

So at first the existing analyzers are examined, then an idea for a new system
is developed and last but not least the final system is introduced.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 36

7 Structure of the existing analyzer system

At first lets take a look at the class structure of the existing analyzer system,
see Figure 14.

Figure 14: Package and class structure of analyzers.

As the Figure illustrates there is no consistent structure in the existing an-
alyzer system. No clear inheritance structure or clearly defined method for
accessing the analysis. Then there are several dependencies among the ana-
lyzers, so that they cannot work independently. Maintenance and extension is
handicapped by this.

7.1 Examination of Charlie’s existing analyzers

Before developing a new system for analyzers, the existing analyzers are exam-
ined for access, dependencies, task, determined properties and position in the
software structure. This gives insight in how things work together and where
changes can or should be applied .

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 37

analyzer Charlie.pn.Analyzer

task initialize the PlaceTransitionNet object from a
file
determine structural properties
evaluate invariants, start invariant computing
using Charlie.inv.InvAnalyzer
provide methods to acquire the status of Petri
net properties

construction Analyzer() which creates an empty uninitialized
object.
Analyzer(String filename, PlaceTransitionNet
pn), the pn-object is initialized by the analyzer
using the file name to read the file. Without
pn.Analyzer the net is not initialized.

class inheritance no inheritance
methods used for analysis Analysis is done directly inside the second

constructor.
analysis invoked by Charlie.gui.GUI.loadNet(String name) constructs

a RGAnalyzer, which is derived from
Charlie.pn.Analyzer. Then the constructor
initializes the PlaceTransitionNet object and
performs the analysis.

determined properties / analysis
results

Structural net properties are determined and
deductions are drawn.
the following properties are determined: BND,
Safe, SB, CSV, NBM, ORD, HOM, CON, PUR,
FTB,TFB,PFB,FPB,NC, DTP

dependencies Charlie.inv.InvAnalyzer and
Charlie.pn.DeadlockAnalyzer are needed to
determine net properties

Table 1: class analysis Charlie.pn.Analyzer

Charlie.pn.Analyzer (table 1) looks a bit overloaded, the main task I see is
determining structural properties. The initialization of the PlaceTransitionNet
object could be done elsewhere as well as starting the invariant computation
and evaluating the invariants. The result set is also stored and managed here,
which could be a task for a single object. The dependencies to other analyzers
could be removed by passing objects, since often Charlie.pn.Analyzer is used to
access the stored pn (PlaceTransitionNet) object.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 38

analyzer Charlie.pn.DeadlockAnalyzer

task compute deadlocks for a Petri net
construction DeadlockAnalyzer(PlaceTransitionNet pn)
class inheritance derived from interface Charlie.pn.DTAnalyzer
methods used for analysis Method compute() starts the analysis and

returns an object Set which represents the
computed Deadlocks. Within compute() the
method deadlocks(...) calculates the deadlocks.

analysis invoked by DeadlockTrapPanel sets the options using the
state of its GUI-elements and starts the analysis
by creating a DeadlockAnalyzer and calling
compute().

determined properties / analysis
results

No Petri net properties are set inside this
analyzer. The property DTP can be determined.
This is done by calling
Charlie.pn.Analyzer.hasDTP(this) from inside
onCompute(), where this is the current instance
of DeadlockAnalyzer. The result is evaluated in
Charlie.pn.Analyzer.

dependencies Charlie.pn.Analyzer, needed to perform DTP
Analysis.

Table 2: class analysis Charlie.pn.DeadlockAnalyzer

The use of Charlie.pn.Analyzer to compute the DTP property is circumstan-
tial (table 2), and should be moved from Charlie.pn.Analyzer to DeadlockAna-
lyzer.

analyzer Charlie.pn.TrapAnalyzer

task compute traps for a Petri net
construction TrapAnalyzer(PlaceTransitionNet pn)
class inheritance derived from interface Charlie.pn.DTAnalyzer
methods used for analysis Method compute() starts the analysis and

returns an object set which represents the
computed traps. Within compute() the method
traps(...) calculates the traps.

analysis invoked by DeadlockTrapPanel sets the options using the
state of its GUI-elements and starts the analysis
by creating a TrapAnalyzer and calling
compute().

determined properties / analysis
results

No Petri net properties are set inside this
analyzer.

dependencies no dependencies

Table 3: class analysis Charlie.pn.TrapAnalyzer

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 39

A problematic issue is, that a TrapAnalyzer instance is casted to Deadlock-
Analyzer in DeadlockTrapPanel.onCompute(), which works but is not a good
style. Within DeadlockAnalyzer checkDTP() the deadlocks are calculated if not
done before, so if calculating Traps with the setting calculate DTP to true, dead-
locks are also calculated. The user initiates a second analysis without knowing.

analyzer Charlie.inv.InvAnalyzer

task compute place and transition invariants for a
Petri net

construction InvAnalyzer(Analyzer analyzer, String filename),
which initializes the invariant analyzer by using
Charlie.pn.Analyzer (to retrieve the
PlaceTransitionNet object) and a file name
pointing to a file which holds invariants.
InvAnalyzer(Analyzer analyzer,InvOptions io)
additional to the initialization, all options for
computation are provided.

class inheritance derived from java.lang.Thread
methods used for analysis Method compute() starts the analysis and

returns an object Set which represents the
computed Traps. Within compute() the method
traps(...) calculates the traps.

analysis invoked by Charlie.gui.InvariantPanel sets the options using
the state of its GUI-elements and starts the
analysis by calling
Charlie.pn.Analyzer.computeInvariants(...), then
an instance of InvAnalyzer is returned.

determined properties / analysis
results

No Petri net properties are set inside this
analyzer.
Charlie.pn.Analyzer determines CTI, CPI, B ,
SB, ECTI

dependencies Charlie.pn.Analyzer - to start invariant
evaluating

Table 4: class analysis Charlie.inv.InvAnalyzer

The class InvAnalyzer (table 4) implements about 60 methods, which is
quite a high number. Some of the methods are not used, instead variables
are accessed directly (e.g. boolean InvAnalyzer.isMCSCenabled() is never used,
instead InvAnalyzer.getOptions().mcscenabled is tested). Here some methods
maybe removed without replacement. Some methods are for input-output pur-
poses of invariants and may be moved into an invariant class, which in turn can
be instantiated by providing a file name. The properties are determined in an
external class and cannot be determined without this external class.

The constructor of DependentSetAnalyzer extracts the invariants and the

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 40

analyzer Charlie.inv.DependentSetAnalyzer

task compute dependent sets on the basis of
previously computed invariants

construction DependentSetAnalyzer(InvAnalyzer invanalyzer,
DependentSetOptions mo) both parameters
provide objects for initialization. InvAnalyzer
could be replaced by passing the required objects
directly.

class inheritance no class inheritance
methods used for analysis Method compute() starts the analysis and calls

computeStrongDTS() or computeSupportDTS()
according to the state of the options.

analysis invoked by Charlie.gui.DependentSetPanel creates a
DependentSetAnalyzer and calls compute().

determined properties / analysis
results

No Petri net properties are set inside this
analyzer.

dependencies Charlie.pn.Analyzer and Charlie.inv.InvAnalyzer
to access invariants and Petri net

Table 5: class analysis Charlie.inv.DependentSetAnalyzer

analyzer objects from InvAnalyzer. The analyzer object is only needed to access
the stored net, so instead of extracting the PlaceTransitionNet object from
Charlie.pn.Analyzer, the net object could be passed directly to the analyzer, as
well as the invariant analyzer object which is only needed to access the object
containing the invariants and to write the computed dependent sets to a file.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 41

analyzer Charlie.rg.RGAnalyzer

task compute coverability or reachability graph for a
Petri net

construction RGAnalyzer(String filename, PlaceTransitionNet
pn)
Since this class inherits from
Charlie.pn.Analyzer, the first constructor uses
the constructor from Analyzer and therefore
initializes the pn-object.
RGAnalyzer()
An empty RGAnalyzer object is created.
RGAnalyzer(RGraph rg)
This constructor sets the value for the internal
RGraph object.

class inheritance derived from Charlie.pn.Analyzer
methods used for analysis The method constructRG() chooses the right

Construction class, then this class creates the
coverability-/reachability graph using its
constructMax(...) or constructSimple(...)
methods.

analysis invoked by Class Charlie.gui.Gui invokes
RGAnalyzer.constructRG(). The method
constructRG() collects the options from global
static variables and creates a new
ConstructionOptions object, then class
Charlie.rg.Construction is used to return an
instance of SimpleConstruction or
MaximumConstruction, depending on the state
of the provided options. If the construction
finishes, RGAnalyzer setRG(...) is called and the
RGraph object is evaluated.

determined properties / analysis
results

Inside of this analyzer the following properties
are set: LIV, REV, DCF, Safe, DST, BND

dependencies Charlie.pn.Analyzer because of class inheritance

Table 6: class analysis Charlie.rg.RGAnalyzer

Within RGAnalyzer, empty objects are also passed to the constructor. Those
objects are initialized inside the class, this indirect initialization is transparent
to the user because the actual task the analyzer is associated with is producing
a reachability graph and setting net properties. The initialization of Petri net
objects or passing empty objects which are initialized inside does not follow a
natural understanding. A better way of producing the result object would be to
call the construct(...) method using the correct options and receive the newly
created result object as well as the net properties that apply for this analysis.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 42

7.2 Problematic issues

The mix of responsibilities makes the analyzer objects quite complex and con-
stricts the understanding. A good example for this is Charlie.pn.Analyzer which
covers several topics: input-/output, initialization of Petri nets, evaluation of
invariants and initiation of deadlock-/trap evaluation. The following issues will
be resolved by the new analyzer structure:

• There is no clear way for GUI components to access analyzers, there are
different ways to start an analysis and often knowledge of more than one
analyzer is necessary.

• The whole processes looks quite complicated and unordered and is there-
fore hard to understand. A new system should improve these aspects
significantly.

• Then GUI objects have to care for updating status information, and lis-
tening for the end of analyses. Inside of the analyzers these listeners need
additional management.

• The class Charlie.pn.analyzer calls InvAnalyzer.computeInvariants() and
evaluates the invariants too. This functionality will be moved towards the
InvariantAnalyzer.

• Also the method hasDTP(...) in Charlie.pn.Analyzer, which has the pa-
rameter DeadlockAnalyzer calls DeadlockAnalyzer.checkDTP() to evalu-
ate the result.

• Analyzers are passed as parameters instead of passing result objects.

• The class Analyzer is misused to access the PlaceTransitionNet inside,
instead of passing the object.

• Also class RGAnalyzer is passed, instead of passing the RGraph object.

• There are many casts from Analyzer to RGAnalyzer.

• DeadlockTrapAnalyzer needs Charlie.pn.Analyzer needed to be constructed
and to to access Petri net.

Objects that are produced during an analysis are hidden inside the analyzers.
The passing of analyzers as parameters, masks the real operations which is
intended by this, e.g. passing pn.analyzer is only needed to access the Petri net
inside analyzer and to call a method from analyzer which could be placed in the
calling analyzer.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 43

7.3 Idea of the new analyzer system

As we have seen on the previous pages, the existing structure for analyzers shows
the way Charlie was developed. Starting with a single analysis more and more
features were built around the program. This lead to the existing structure.
Now it was time to think about a new way of handling and creating analyzers
for Charlie. Together with the new user interface the whole analyzer system
was revised.

The task was to create “A concept for managing and controlling analysis
threads”. What does this mean:

1. There is more than one analysis thread.

2. The threads work independently.

3. Parallelism is realized inside the analyzers, which means that existing
algorithms are not paralleled, but left as they are.

4. Controlling means: pausing, resuming, canceling threads.

5. Managing means: get information about the thread and its analyzer, cre-
ate analyzing threads, collect their results and return the results to the
presenting user interface.

So I developed the following requirements which are the direct product of the
analysis of the existing structure and the task.

1. Creating (implementing) an algorithm as Charlie analyzer must be very
simple.

2. The special analyzer (like InvAnalyzer) itself should be freed from all tasks
but realizing the analysis algorithm.

3. The programmer of the analyzer doesn’t need to care about creating an
analyzer thread and the tasks that are connected with starting a thread.

4. The analyzers must get a generic representation in the user interface,
which informs the user about the status of the analyzer and allows him to
interact with the analyzer (pause/resume/cancel/status).

5. Since more than one analyzer can be active, the output can’t be accessed
directly by the analyzer, so appending the output to the protocol has to
be managed.

6. Each analyzer is independent from other analyzers. If one analyzer de-
pends on a result created by another analyzer the managing class has to
ensure that the analyzer gets his result.

7. Initialization of analyzers is done by a consistent way.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 44

8. Direct access to analyzers by the classes of the user interface or the logic
is not possible anymore, the managing class cares for selecting the correct
analyzer for the needed analysis.

9. Since a textual interface for Charlie is another task, the analyzer system
must be operable independently from any graphical user elements.

These requirements are created because the implementation and integration of
an additional analysis should be as easy as possible. The implementer of the an-
alyzer class has to care for so much things, like memory consumption, efficiency,
correct algorithms etc. that caring for “lower” tasks distracts attention.. So the
new structure should define a clear way to integrate an analyzer into Charlie,
to access it and use its results.

My idea of the process is shown in the following diagram.

Figure 15: Idea of analyzer use.

The Figure 15 already shows the main actors for this structure. If this
structure will be realized at least the following questions have to be answered:

• How stores the analyzer Manager the special analyzers?

• How can the manager choose the correct analyzer?

• Is it possible to initialize all analyzers with the same procedure, even if
the options are different?

• How is the analyzer manager informed about the end of an analysis and
how is the result passed to the user interface?

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 45

7.4 Introduction to the new analyzer system

The realized system takes care of those questions. I will split the introduction
of the system into three parts:

1. The class that acts as basis for all analyzers.

2. How options are passed and stored.

3. Realized Analyzers.

4. The analyzer manager and how analyses are invoked from the GUI and
how the results are returned.

5. How does the thread manager handle the analyzer threads.

6. A summary what has to be considered when implementing an analyzer.

In difference to the existing system all analyzers are located in separate packages
below Charlie.analyzer.

The sequence diagram (Figure 16) shows the realized way an analysis is
invoked, from pressing the compute button till the return of the results. The
following pages will introduce the involved classes in detail.

Figure 16: Sequence diagram showing use of analyzers.

7.5 Charlie.analyzer.Analyzer - the basis for all analyzers

The class Charlie.analyzer.Analyzer is essential for the simple use of all ana-
lyzers, because it handles the most issues for all derived classes. The following
tasks are performed by Analyzer:

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 46

• the interaction with the ThreadPanel, which shows information on the
running analyzer and allows to pause/resume or cancel the analyzer.

• setting and storing the start time and end time and returning it to the
ThreadPanel or the output

• provide a check if the analysis should be interrupted because the user
pressed cancel on the ThreadPanel

• provide a setup method that initializes all needed variables and prepares
all variables for the (short) final setup in the derived analyzer

• provide methods to access results objects or options and set and retrieve
results.

• since Analyzer implements the interface Runnable, the run() method is
implemented here too and makes the calls to the method that starts the
analysis.

Analyzer is declared as abstract class, which means that classes who are de-
rived by Analyzer must implement certain methods which are also declared as
abstract. This ensures that all needed methods (like analyze() or evaluate())
are implemented by the programmer. Most methods don’t need any parameter,
so the implementer is forced to use the derived option set for this analyzer as
storage for all settings and objects needed to perform the analysis. This ensures
a consistent way of using all analyzers. The following methods are declared
as abstract: cleanup(), initializeInfoStrings(), analyze(), evaluate(), getNewIn-
stance(OptionSet) their tasks are explained later.

Variables of the analyzer base class

panel If a graphical user interface is used, the thread manager will create
a ThreadPanel for each started analyzer and ThreadPanel places
a reference to itself in this variable. The analyzer must know the
panel, because the user is informed about the status of the analyzer
by using colors in the ThreadPanel. Only the analyzer can determine
if the analysis is finished, because the derived analyzer returns from
its analyze() method. So the status get automatically updated if the
analyzer finishes.

lock An object that is used to synchronize access to critical parts of the
code. Because the status of the analyzer can be changed by user
interaction as well as by the analyzer itself, the areas which set the
status or get the status are protected from interruption by using this
lock object.

options This is the reference to the OptionSet object which holds all in-
formation needed for the analysis. This object is explained later
in details. The initialized set of options is passed by the setup(...)

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 47

Figure 17: Class structure Charlie.analyzer. Analyzer with classes it depends
on.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 48

method. Initialization is done either by using user interface elements
or the parameters provided by the textual interface.

infoStrings This array of Strings stores mostly status information on the ana-
lyzer and is initialized in the derived analyzers. The implementer is
free to choose to display all interesting information his analyzer can
provide.

endTime/startTime These are the times the analyzer was started and finished
his work. They are initialized and set automatically by the base
class, derived classed do not need to care about them.

name A string which represents the name of the analyzer, the implementer
should set this variable when the constructor of his analyzer is called.
The name for example is used in the ThreadPanel to identify the
analyzer.

immediateExecution During the implementation it turned out that certain an-
alyzers may require only a short time to perform their analysis, like
the StructuralAnalyzer. If the programmer chooses to set immedia-
teExecution to true, then the analyzer is executed directly without
being represented by a ThreadPanel or waiting for other analyzers
to finish their work. The default value is false, so if not set the
analyzer will use the thread manager.

initiator The only method defined by the initiator interface is analyzerHas-
Finished(Analyzer finished), which must be implemented by the
class who is interested in getting the result after the analysis fin-
ishes. In most cases the class which initiated the analysis will im-
plement this interface. The reference to this class is passed with the
option set and initialized by the setup(...) method. The initiator is
not informed directly by the analyzer, but by the analyzer manager
after some checks.

status This integer value represents the current state the analyzer is in. The
following final static variables represent the allowed states: CRE-
ATED - if the analyzer is reset or instantiated, REGISTERED - if
the analyzer is registered within the analyzer manager, SETUP - if
the setup was performed, WAITING - if the analyzer waits for exe-
cution, PAUSED - if the analyzer is paused, ACTIVE - the analyzer
performs its analysis, FINISHED - the analyzer could finish its anal-
ysis and returned safely from the analyze() method, CANCELED -
if the user interrupted the analysis.

count Since updates to the associated ThreadPanel are done if checkStatus
is called, this internal variable counts how often checkStatus is called.
In cooperation with updateInterval the update is done every time
count equals updateInterval.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 49

updateInterval The programmer may set an appropriate value for his analyzer,
because each analyzer might perform more or less loop runs during
his analysis. Because the update to the thread panel should not
be done every time checkStatus is called (otherwise the computer
is more stressed with updating the thread panel than with the real
analysis) the updateInterval variable sets the distance between up-
dates.

The base class only holds 11 variables and 6 of them are declared as private
and are therefore invisible to derived classes. Some of the needed complexity is
hidden inside the OptionSet object, which will be explained later.

methods of the analyzer base class I want to start with the abstract
methods and illustrate their meaning for the derived analyzers, which have to
implement them.

analyze() This method should do all necessary operations to perform the anal-
ysis. Since the run method is implemented by the base class, run()
makes a call to analyze() to start the analysis after some checks.
This method should never be called directly, therefore it is declared
as protected. So only Analyzer or the derived class are able to call
it.

evaluate() The analysis and the evaluation of results should be separated, be-
cause analysis methods tend to become long and this enables the
programmer to place the conclusions, the produced result allows,
here. The method is called by run() too.

cleanup() If the analyzer is canceled by the user, this method is called by
getStatus(), so the analyzer has the possibility to clean up objects
that consume memory but are not usable.

getNewInstance() This method is the second stage in the process analyzers are
chosen by the analyzer manager. The analyzer manager decides on
the basis of the pair of object that is to be analyzed and the object
that is the result of the analysis. But if the decision cannot be made
because values of variables of the option set decide which special ana-
lyzer has to be chosen, then this method must implement this choice.
An example for the use of this is RGAnalyzer, which implements the
choice between SimpleConstruction and MaximumConstruction by
the value of the variable fireRule inside ConstructionOptions.

initializeInfoStrings() The ThreadPanel offers a button, which shows statistics
about the current analyzer. These statistics are displayed on the
basis of this String array. The array even indices are initialized with
the description of a statistic value and the following odd index is
filled with the value itself. The implementation should update the
values every time this method is called.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 50

Now the non-abstract methods are listed, ordered by their importance.

run() After checking the correct status of the analyzer, the status is set to
an active, the start time is set and analyze() is called. Then if the
analysis finished the end time is set, the status is updated and the
analyzer informs the analyzer manager about the successful end of
the analysis.

register() This static method needs to be overridden by the derived analyzer.
Within this method the analyzer should perform all actions neces-
sary to register itself in the analyzer manager. Because the method
is static no additional instance of the analyzer has to be created.

checkStatus() The return value (true/false) tells the derived analyzer, who calls
this method, if he can continue his work (in case true is returned)
or if he should stop working (in case false is returned). Next to this,
the ThreadPanel is updated. An imported part is the realization of
the pause feature of the analyzer. Normally the programmer would
check a variable (e.g. via getStatus()) at a certain time and decide if
the analyzer has to wait until the status changes so that the work can
be continued. This behavior is completely implemented inside this
method. So calling this method inside the analyzer automatically
pauses the work until the user decides to press the resume button
in the ThreadPanel. The programmer doesn’t need to care about
the pause/resume feature in his analyzer. What is more important
is to place the call to checkStatus() at a good position inside the
algorithm, but this can be done best by the programmer since he is
probably the best source for knowledge about the algorithm.

pause() Sets the status of the analyzer to PAUSED. The next call to check-
Status will put the analyzer to sleep.

resume() Sets the status of the analyzer to ACTIVE, the lock variable is
notified so that the analyzer continues his work.

cancel() The status is set to CANCELED and in case the analyzer was paused
the lock is notified so that the analyzer can abort his work in a
defined way.

setStatus() The method enables setting the status of the analyzer, with inform-
ing the ThreadPanel about the changed state (if necessary).

The original analyzers had to care for instantiating and managing timers to
retrieve the duration of an analysis, now this is automatically done by the base
class. If a derived analyzer needs to know the time it is run, the methods getDu-
ration(), getCurrentDuration() and getFormatedDuration() will tell the value.
The methods setStartTime() and setEndTime() are declared as private, so only
the base class has access to this methods.So full control about determining the

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 51

time lies inside the base class, this prevents possible mistakes by unintended or
wrong calls to this methods.

There are several getter and setter methods which need no further explana-
tion, since their name contains enough information about what objects are set
or got by this method. These methods can be seen in the Figure 17.

7.6 How options are passed - the class OptionSet

The existing analyzer have all been adapted to the new system. The adaption
was not always simple, as the analyzer were not prepared for the system. So all
calls and operations an global static variables had to be removed, since these
operations can only be coordinated safely with big efforts. In difference to the
existing system now each analyzer can be instantiated more than once and if a
static option is changed the effects on running analyzers can’t be predicted.Next
to this, the way of appending output to the protocol had to be changed. The
immediate output via Charlie.pn.Out is no longer an option, the output of ana-
lyzers which are active would be mixed. Therefore all existing implementations
had to be searched for those commands.

Also the determination of net properties with the use of the calculated re-
sult objects, had to be moved from Charlie.pn.Analyzer to the analyzers which
produced the result object. Also almost each analyzer implemented methods
for storing the results into files as well as loading results from files, so there are
many redundant lines of code. So the import and export of results is placed
outside the analyzer, what is left inside is the call to the export functions.

The investigation of analyzers shows the need for two additional classes :

• a class that stores all options, results and (textual-)output and

• a class that represents the result object and can help to identify the ana-
lyzer.

Figure 18 shows the needed objects for InvariantAnalyzer.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 52

Figure 18: Set of objects needed for an analyzer exemplified with InvariantAn-
alyzer.

The classes PInvariant and TInvariant are used to identify the analyzer and
store the computed invariants. InvOptions store all special options needed to
compute the invariants. For example the value of the member variable InvOp-
tions.transitions determines what type of invariant is to be computed. The
original analyzer only knew the type SparseMatrix, the type of the invariant
was not stored inside the SparseMatrix object.

So each analyzer knows its own result object and the pairs are:

• InvariantAnalyzer - Invariant, PInvariant, TInvariant

• DeadlockAnalyzer - Deadlock

• TrapAnalyzer - Trap

• RGAnalyzer / SimpleConstruction / MaximumConstruction - RGraph

• StructuralAnalyzer - PlaceTransitionNet

7.7 Example invariant options

Figure 16 shows the principle of passing options to the analyzer. The invariant
dialog in Figure 19 displays some checkboxes and radio buttons. The state of
these components is captured when the compute button is pressed and then
analysis is started by passing the options to the AnalyzerManager.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 53

Figure 19: Invariant options dialog.

To stay with the previous example of invariant computation, the following
listing of InvariantComputationDialog shows what has to be done to create the
OptionSet .

1 JButton compute = new JButton (new AbstractAct ion ("Compute ! ")
{

2 public void act ionPer formed (ActionEvent e) {
3 i f (pn != null) {
4 InvOptions i o = new InvOptions () ;
5 Invar ian t i n v a r i an t = null ;
6 i f (jRadioButtonTInvariants . i s S e l e c t e d () && !

jRadioButtonPInvariants . i s S e l e c t e d ()) {
7 i o . t r a n s i t i o n s = true ;
8 i n v a r i an t = new TInvar iant () ;
9 } else{
10 i o . t r a n s i t i o n s = fa l se ;
11 i nv a r i an t = new PInvar iant () ;
12 }
13 i o . coverage = checkCoverage . i s S e l e c t e d () ;
14 i o . extendedCoverage = checkStrongCoverage .

i s S e l e c t e d () ;
15 i o . d e l e t eT r i v i a l= d e l e t eT r i v i a l I n v a r i a n t s .

i s S e l e c t e d () ;
16 i o . e xpo r tF i l e = invExportFi le I tem . i s S e l e c t e d () ?

invExportFi le I tem . getAbsoluteFileName () : null ;
17 . . .
18
19 compute (pn , invar ian t , i o) ;
20 }
21 }
22 }) ;

It can be seen that the constructor of InvOptions needs no parameters. All

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 54

member variables are public so there is no need to implement simple get/set
methods which only pass or return the value. Each value is represented by an
element in the user interface. Mostly checkboxes, comboboxes or spinners are
used to determine the values needed for the option set. This ensures simple
access and storage of the options.

After setting the appropriate options, the dialog’s compute(...) method is
called , which thereafter calls the AnalyzerManager.compute(...) method.

Each option set should use public member variables for their options, because
otherwise a lot of getter and setter methods would have to be implemented.

7.8 The OptionSet class in details

Figure 20: Class diagram Charlie.analyzer.OptionSet.

Member variables

resultObject Here the analyzer stores the result of its analysis.

objectToAnalyze Here the object that is to be examined by the analyzer is
stored. The class that collects all options must also own a reference
to this object to pass it to the analyzer.

initiator This variable is needed to return to the class that initiated the anal-
ysis. The analyzer manager checks if this variable is set and if so the
method analyzerHasFinished() is called on initiator. So the results
are passed to the logic or GUI and can be presented to the user.

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 55

nextStage This variable is used to realize the concept of multi-stage-analyses.
Here the option set for the next analysis is stored. The analyzer
manager uses this variable to setup the next analysis.

setList If there is more than one stage,the option sets with the results of
each stage are stored here.

Methods

getAsProperties() The current state of the option set is returned as java.util.Properties.
This method is declared as abstract, so the derived classes have to
implement this method. A Properties object is returned, containing
the state of the option set.

initByProperties() By using this method an option set can be initialized by
passing a Properties object. This method also has to be implemented
by the derived option set.

getHtmlInfo() The current state of the option set is returned as HTML table.

toString() The current state is returned as string.

addPreviousResults() If a previous analysis finishes, the analyzer manager puts
the results of this analysis into the option set of the next stage using
this method.

numberOfResults() If the results of an analysis are evaluated, this method tells
the number of previous stages.

initializeByString() The textual interface will need this option, since the pa-
rameters for the analyzers are passed as string. The evaluation has
to be done in each derived analyzer.

getValue() Needed by initializeByString(), these methods extract the value for
an option from the parameter string and initialize the corresponding
variable with the return value. If no value can be queried the passed
standard value is used. Currently there are 4 getValue() methods,
with different types for standard values and return values. The
methods are declared as static, so they can be accessed by the textual
interface to extract additional parameters not needed by option sets.

The remaining get/set methods are self-explanatory.

7.9 Multi-stage analyses

The examination of the invariant analyzer and the dependent-set analyzer showed
that the dependent sets cannot be computed without previously computed in-
variants. So the dependent-set analyzer needs the results of the invariant ana-
lyzer. This has to be reflected by the option set. So I introduced an additional

www.manaraa.com

7 STRUCTURE OF THE EXISTING ANALYZER SYSTEM 56

variable in the option set called nextStage. The option set for the second stage
is placed in this variable. If the analyzer manager is informed about the end
of the invariant analysis, it checks if the nextStage variable points to an option
set. If so the manager collects the results from all previous stages, puts them
into the option set of the next stage and starts the next analysis. So the results
are carried along until the last analysis finishes. If the next stage did not set the
objectToAnalyze, the result of the previous analysis is set as objectToAnalyze.
So the computed invariants are passed to the dependent-set analyzer.

In terms of the textual interface this is extremely useful. The parameters
typed in the console describe the options for an analysis, if more than one
analysis is planned and all the analyses should be executed one after another,
the nextStage variable can be used to realize this. The next analyze not is
invoked till the previous analysis has finished.

7.10 Implemented option sets

The Figure 21shows all implemented option sets and their member variables.

Figure 21: Hierarchy of option sets.

www.manaraa.com

8 REALIZED ANALYZERS 57

8 Realized analyzers

The previous class structure (see Figure 14) is replaced by the new structure in
Figure 22.

Figure 22: New class structure for analyzers.

The new analyzer structure is also reflected in a new package structure, which
places each analyzer in a separate package. If additional objects are necessary
to perform an analysis these can be placed there too. So the usual contents of
an analyzer package is the analyzer class, the option set, one or more classes
that represent the objects that are products of the analyses.

You will notice that analyzers are missing, compared to Figure 14. The
Buechi construction is not used in my version of Charlie and shortest path
construction is currently revised in an other work [AF2009] , so they are not
analyzed and not integrated in the new structure.

The designed structure (Figure 23) reflects the clear and easy to understand
system.

Figure 23: Analyzer package structure with example.

www.manaraa.com

9 ANALYZERMANAGER - HOW ANALYSES ARE INVOKED 58

Figure 24: Class diagram analyzer manager.

9 AnalyzerManager - how analyses are invoked

Now its time to describe the way the analyzer manager works. Because direct
dependencies between analyzers and the user interface are undesired, the ana-
lyzer manager takes the part of choosing the correct analyzer and starting the
analysis. The analyzer manager holds all possible instances of analyzers and
identifies them by the objects that are to be analyzed and the objects that are
the results of the analysis (Figure24).

9.1 How an analyzer is identified

Before the analyzer manager is able to choose the correct analyzer, the analyzer
must be registered in the analyzer manager. This can be done within the logic
that collects the options for the analysis or at a central place in the applica-
tion. I chose to register the analyzers in the corresponding user interface. The
system uses the types of the object that is analyzed and the type of the object
that is produced by the result to match the analyzer. Therefore the analyzer
implements the static method Analyzer.register() in which an analyzer instance
along with the analyzed object and the produced object is created and Ana-
lyzerManager.register(...) is called. The following listing of InvariantAnalyzer
shows the necessary steps.

1 public static boolean r e g i s t e r () {
2 Invar ian tAna lyzer i a = new Invar ian tAna lyzer () ;
3 PlaceTrans it i onNet pn = new PlaceTrans it i onNet () ;
4 boolean b1 = AnalyzerManager . r e g i s t e r (ia , pn , new

PInvar iant ()) ;
5 boolean b2 = AnalyzerManager . r e g i s t e r (ia , pn , new

TInvar iant ()) ;
6 i f (b1 && b2) return true ;
7 else return fa l se ;
8 }

www.manaraa.com

9 ANALYZERMANAGER - HOW ANALYSES ARE INVOKED 59

It can be seen that each analyzer is allowed to register itself for more than
one result object and even more than one object to analyze. Here the invari-
ant analyzer registers itself for performing analyses on PlaceTransitionNets to
compute PInvariants and TInvariants.

If an analyzer with the same combination of objects tries to register, the
AnalyzerManager refuses this and returns false. For registration it is not neces-
sary to have initialized objects. The objects should rather be empty and should
not consume large amounts of memory immediately after construction. After
an analyzer is registered, it is found by AnalyzerManager.getAnalyzer(...). This
method looks for an analyzer in the analyzer list, that matches the types of
classes. Type in this case means the full qualified class name of the object,
which can be easily determined by calling getClass().getName() on the object
instance. Then the class names for objectToAnalyze and resultObject in the
stored AnalyzerSet are compared with the names of the provided parameters.
If both names are equal the adequate analyzer is returned.

9.2 How an analysis is invoked

If the option set is created and filled with values the class which created the
option set just has to call Analyzer.compute(...) and the analysis will be per-
formed. There is nothing more to do to invoke an analysis. It is possible to
put several analyzers in the waiting queue of the thread manager, with each
analyzer equipped with an option set with different values.

The compute method only chooses the correct analyzer with the help of
getAnalyzer(...) and if an analyzer could be found a new instance is created
by calling a.getInstance(...). Since the option set is passed as parameter the
method can call setup on the new analyzer instance. When the new analyzer is
returned an additional check is performed. If the analyzer is not initialized then
the setup method is called on the new analyzer. After the setup the analyzer
is passed to the ThreadManager, which cares for the correct execution of the
analysis.

1 pub l i c s t a t i c synchron ized boolean compute (Object
objectToAnalyze , Object r e su l tOb jec t , OptionSet opt ions ,
I n i t i a t o r i n i t i a t o r) {

2 Analyzer a = getAnalyzer (objectToAnalyze , r e su l tOb j e c t) ;
3 i f (a != nu l l) {
4 Analyzer newAnalyzer = a . getNewInstance (op t ion s) ;
5 i f (newAnalyzer . ge tS tatu s () !=Analyzer .SETUP)

newAnalyzer . setup (objectToAnalyze ,
opt ions , r e su l tOb j e c t) ;

6 i f (i n i t i a t o r != nu l l)
7 opt ion s . i n i t i a t o r = i n i t i a t o r ;
8 ThreadManager . add(newAnalyzer) ;
9 return t rue ;
10 }
11 // an e r r o r occurred no ana ly ze r cou ld be found for the

combination o f objectToAnalyze and r e su l tOb j e c t

www.manaraa.com

9 ANALYZERMANAGER - HOW ANALYSES ARE INVOKED 60

12 return f a l s e ;
13 }

The described system allows to associate only one analyzer with a pair of
objects. It’s possible that the correct analyzer can only be chosen by knowing
the value of an option inside the option set. This needs knowledge of the special
option set and the connection of the special analyzer to the option value. The
analyzer manager would grow in size and get quite complicated if this logic is im-
plemented here. At this point the method Analyzer.getInstance(OptionSet set)
can help. Since the initialized option set is passed to getInstance the analyzer
can choose a special analyzer by evaluating certain options. The RGAnalyzer
with the derived analyzers SimpleConstruction and MaximumConstruction is
an example for this. The value for the fire rule inside ConstructionOptions de-
cides which analyzer is returned by getInstance. So both the combination of
objects and values inside the option set can decide about the correct analyzer.

www.manaraa.com

10 THREAD MANAGER - HOW ANALYSIS THREADS ARE HANDLED61

10 Thread Manager - how analysis threads are

handled

During the development I tried to create my own thread manager which would
implement the handling of threads. Some research showed that Java offered an
excellent class that exactly realizes the needed functionality. ThreadPoolEx-
ecutor is this class. The java documentation names the advantages of a thread
pool:

“Thread pools address two different problems: they usually pro-
vide improved performance when executing large numbers of asyn-
chronous tasks, due to reduced per-task invocation overhead, and
they provide a means of bounding and managing the resources,
including threads, consumed when executing a collection of tasks.
Each ThreadPoolExecutor also maintains some basic statistics, such
as the number of completed tasks.“ (Java 2SE Documentation)

Around the executor service the thread manager creates a frame which allows
the user to see which analyzer is active or waiting or finished (Figure 25). The
interaction between the ThreadPanel and the Analyzer is managed by them-
selves. The thread manager only executes the analysis and creates the GUI
representation.

Figure 25: Thread manager class structure.

The classes AnalyzerDialog and AnalyzerList are wrappers for a JPanel and
an ArrayList. The AnalyzerList acts as a model for the AnalyzerDialog and the
dialog is the viewer of the model. So if the list is changed the dialog is updated
too. The thread manager only needs to add analyzers to the list or remove them
and the dialog is always updated. If the programmer decides to set the variable

www.manaraa.com

10 THREAD MANAGER - HOW ANALYSIS THREADS ARE HANDLED62

Figure 26: Thread manager frame.

immediateExecution in the analyzer to true, then the ThreadManager creates a
thread for this analyzer and starts it without considering other analyzers, which
may be currently active. The immediate analyzers do not get a thread panel, the
results of their work can only be seen in the protocol or the NetPropertiesDialog.

The thread manager frame (Figure 26) displays a panel for each analyzer
which is started. The background color of this panel changes with the status
of the analyzer (finished= green, active = blue, paused = orange, canceled =
pink). The user is able to pause the work of the analyzer and resume it. This is
useful if the processing power of the computer is temporarily needed for other
purposes. Then if the analysis is not needed anymore or the options have been
set wrong, the user can decide to stop the analyzers work.

As additional information the name of the analyzer and the time it has been
active is displayed. Currently the time is calculated by the difference between
the point in time where the analyzer started its work and the point where the
analyzer finishes, so the time the analyzer is paused is counted too. Furthermore
the user can access statistical values by pressing the third button (from the
left) in the button row. This calls Analyzer.getHtmlInfoStrings() and should
therefore be implemented properly by the derived analyzers. The last button
shows a representation of the options with which the analyzer was started. So
the user can distinguish between two instances of the same type of analyzer with
different option values.

www.manaraa.com

11 HOW TO IMPLEMENT A DERIVED ANALYZER 63

11 How to implement a derived analyzer

This section wants to give useful hints for the implementer who wants to adapt
an existing analyzer or create a new analyzer for Charlie.

The body for an empty derived analyzer looks like the following program
listing.

1 package Char l i e . ana ly ze r . newAnalyzer ;
2 import Char l i e . ana ly ze r ∗ ;
3 public c l a s s NewAnalyzer extends Analyzer{
4 // member v a r i a b l e s to p lace h i e r
5
6 public NewAnalyzer () {
7 executeImmediate ly = true ;
8 setName ("NewAnalyzer") ;
9 se tUpdate In t e rva l (1000) ;
10 }
11 public s t a t i c boolean r e g i s t e r () {
12 return AnalyzerManager . r e g i s t e r (new NewAnalyzer () ,
13 new ObjectToAnalyze () ,
14 new NewResultObject ()
15) ;
16 }
17 public void getNewInstance (OptionSet opt ion s) {
18 NewAnalyzer na = new NewAnalyzer () ;
19 na . setup (opt ion s) ;
20 return na ;
21 }
22 public void cleanup () {
23 // i f the ana ly ze r f i n i s h e s or i s stopped t h i s method

i s c a l l e d
24 }
25 public void i n i t i a l i z e I n f o S t r i n g s () {
26 // s t a t i s t i c s about the an a l y s i s p roce s s are

i n i t i a l i z e d here
27 }
28
29 public void analyze () {
30 // here the an a l y s i s i s performed
31 }
32
33 public void eva luate () {
34 // here the result i s evaluated and r e s u l t s are s e t
35 }
36
37 }

At first the fictive analyzer “NewAnalyzer” is placed inside a separate sub-
package named Charlie.analyzer.newanalyzer. Certainly the class has to be
derived from Charlie.analyzer.Analyzer. Then the implementer places all nec-

www.manaraa.com

11 HOW TO IMPLEMENT A DERIVED ANALYZER 64

essary member variables to perform the analysis.
The constructor should do at least two things:

• call setName(...) to give the analyzer a descriptive name

• decide to set immediateExecution to true or false

• and optionally, if the update of the thread panel is to unresponsive or to
fast, adjust the update interval using setUpdateInterval(...). The standard
value for update interval is 500, so every 500th call to checkStatus(...) the
thread panel is updated.

The static method register() is crucial for the use of the analyzer, if the imple-
mentation of this method is forgotten, the method of the base class is called.
Because the modifier static cannot be applied together with the modifier ab-
stract, the base class implements an empty method which only places a waring
to the console output. But the registration is not done in this case. So the com-
piler won’t show any error if the method is missing in NewAnalyzer. Within
register a call to AnalyzerManager.register(...) is done. To call the method, a
reference to an instance of NewAnalyzer and the identifying objects has to be
created and passed as parameters. If more than one type of result objects can
be produced by this analyzer, more calls to AnalyzerManager.register() have to
be performed. The analyzer instance itself can be passed more than once to
the AnalyzerManager and needs not to be created again each time register() is
called. Also if the analyzer is able to process different objects and analyze them,
the combination of the object to be analyzed and the produced output object
must be told to the analyzer manager.

The method getNewInstance can be as simple to implement as the listing
shows. Just create a new instance of NewAnalyzer, call setup using the option
set and return the newly created analyzer. But if the choice of the analyzer
depends on the value of an option, this option has to be analyzed and then
depending on the value, the correct analyzer is created and returned. In this
case it is best to derive those special analyzers from the NewAnalyzer class, but
this is not a must.

If cleanup() is called the analyzer either finished or was stopped, so if nec-
essary now unused objects or unneeded references may be removed. In short if
some cleanup operations can be done after an analysis these operations should
be done here. If there are no such useful operations or the operations are not
known during the development, this method can be left empty. But the method
body has to be in the class since the method is declared abstract in the base
class.

If the user presses the statistics button in the thread panel, the panel makes
a call to getHtmlInfoStrings() and this method calls initializeInfoStrings() to
update the strings. So here useful information about the current state of the
analysis can be initialized here. Remember, the variable infoStrings is an ar-
ray of String objects, with the even indices being the description and the odd
numbers being the presented value. The RGAnalyzer e.g. displays the current

www.manaraa.com

11 HOW TO IMPLEMENT A DERIVED ANALYZER 65

number of edges, scc’s and states. If this method is left empty nothing will be
displayed, when the statistics button is pressed.

The last methods analyze() and evaluate() are called by Analyzer.run(). The
analyze() method should implement the algorithm for the analysis and evaluate
should gather the results e.g. net properties out of the created object(s). The
separation of both aspects allows the replacement of the algorithm while the
evaluation can stay the same. RGAnalyzer is a good example since the algorithm
is realized in SimpleConstruction and MaximumConstruction, while evaluate()
is implemented in RGAnalyzer.

Within analyze() some tasks have to be performed before the real algorithm
can start. Using the example from SimpleConstruction these tasks will be ex-
plained.

1 public void analyze () {
2 this . pn = (PlaceTrans it i onNet) (op t ion s . getObjectToAnalyze

()) ;
3 this . co = (Construct ionOpt ions) op t ion s ;
4 rg = new RGraph(pn) ;
5 rg . setBackEdgeOption(co . backEdges) ;
6 setOutput (" r e a c h ab i l i t y ␣graph ␣ ana ly ze r : \ n") ;
7 setOutput ("computing␣ r e c h a b i l i t y ␣graph␣ us ing ␣ s imple ␣␣

f i r i n g ␣ ru l e ") ;
8 try {
9 rg = const ruc t () ;
10 opt ion s . s e tResu l tOb jec t (rg) ;
11 }catch (Exception e) {
12 setOutput (" s imple ␣ con s t ru c t i on␣ f a i l e d ␣due␣ to ␣ sa f e t y ␣

excep t ion . ") ;
13 e . pr intStackTrace () ;
14 }
15 }

At first the member variables of the analyzer have to be initialized using the
option set. In this case, the object which is analyzed is a PlaceTransitionNet
object that is stored in the member variable pn. Also a member variable with
the type of the used option set should be created, so that the cast has to be done
only once. Then other options are evaluated (co.backEdges). If the analyzer
generates output that will be seen later in the protocol window, the output
must be stored using setOutput(...), otherwise the text will not be displayed
automatically.

SimpleConstruction owns a method named construct() which generates the
reachability graph using the initialized member variables of the class. Depending
on the complexity of the algorithm, the algorithm may be implemented within
analyze() or use several methods or even external objects. Before leaving the
analyze method the result object has to be set in the option set.

The method evaluate() can use the resultObject and draw conclusions to
apply net properties or generate additional output, which explains the conclu-
sions. If this method is left empty and the conclusions are drawn inside analyze()

www.manaraa.com

11 HOW TO IMPLEMENT A DERIVED ANALYZER 66

nothing will happen. Analyzer.run () automatically calls this method, so the
separation of tasks should be preferred by the implementer.

These simple steps should be enough to get a working analyzer

www.manaraa.com

67

Part IV

A textual interface for Charlie

12 The textual interface

Since some of the analyses use large amounts of memory, the software should be
used without graphical user interface on large machines with more memory. Or
the analyses should be performed quietly in the background while doing other
work. So all the analyzes must be able to be invoked by using command line
parameters. The new structure of analyzers and option sets makes realization
of this feature possible.

The necessary steps are the following:

• Define a syntax for the command line arguments.

• Create a class that registers all known analyzers, then divides the argu-
ment list into pieces for each analyzer.

• Extend all option sets with a method that initializes the option set with
the parameter string.

• It must be possible to perform all possible analyses with one call, so the
parameters must be distinguished somehow.

12.1 Syntax of analyzer parameters and fix parameters

The existing option sets define options of the following types: boolean, int, File
and String. Those types must be initialized by the parameters provided by
the console. Since parsing parameters can be very complicated, there are some
restrictions and rules. So the syntax is defined as follows:

1. Each parameter has to end with a semicolon.

2. The parameter description and the value must be separated by an equal
sign.

3. An analyzer is selected by the parameter –analyze=...; The name of the an-
alyzer is not a valid value for the parameter, but the result of the analysis.
This means for example for calculating a place invariants the parameter
has to look like this:

−−ana lyze=PInvar iant ;

By naming the result of the analysis, the textual interface follows the
design which was introduced with the graphical user interface. The prefix
of this parameter must be –analyze. The two leading hyphens are needed
to separate the parameters of each analyzer. The pattern for more than
one analyzer is the following:

www.manaraa.com

12 THE TEXTUAL INTERFACE 68

. . . −−analyze=RG; . . . −−analyze=Trap ; ...−− analyze=Props ; . . .
| a l l RG parameters | a l l Trap param . |

The parameters which belong to an analysis must follow the –analyze
parameter, if they are placed before –analyze or behind the next “–analyze”
the parameter is not associated with the analysis and is therefore ignored.

4. Boolean parameters are initialized by using the values 0 for false and 1 for
true. A Boolean parameter looks like this:

backEdges=1;

5. Integer parameters are initialized by placing the value behind the equal
sign.

maxConstDeph=1000;

6. File parameters are initialized by placing the path to the file behind the
equal sign.

e xpo r tF i l e=D:\ data\examples_old\ t r a v e l . apnn ;

7. String parameters are initialized the same way like file parameters. But
the string parameter must not contain a semicolon, otherwise the next
parameter will not be interpreted correctly.

8. The net file which will be analyzed must be passed to the program by
using the –netfile parameter. If this parameter is omitted the program
cannot start.

9. The parameter –sequential controls the behavior of the program and dis-
ables or enables parallel processing of analyses.

10. The output of analyzers can be stored in a text file using the parameter –
outputfile. An existing output file is overwritten without further questions.
If the parameter is not stated, the output appears in the console window.

This small set of rules keeps the system simple and easy to use. If a parameter
is not set, the initial values defined in the option set are used to perform the
analysis. So each member variable in an option set should be initialized with
a standard value. If not the analyzer should be aware that parameters may be
uninitialized.

12.2 Sequential vs. parallel execution

The analyzer system offers two ways of performing multiple analyses. The first
way is to process the analyses one after another, the second way uses all available
CPU cores to perform as many analyses as possible at one time. The param-
eter which controls this behavior is –sequential, it is a Boolean parameter and

www.manaraa.com

12 THE TEXTUAL INTERFACE 69

must therefore initialized with 0 or 1. If set to true all analyses are started if
the previous analysis has finished. This is done by packing the option sets into
each other. The member variable nextStage is filled with the next option set. If
the analyzer finishes and informs the analyzer manager by calling AnalyzerMan-
ager.analyzerHasFinished(). The manager inspects the nextStage value and if it
is not set to null, a new analysis is started. The results and the output are passed
as previous result to the next option set. So a recursive behavior is realized and
all analyzers are executed by once calling AnalyzerManager.compute(options).

If –sequential is set to false all created option sets are passed to the analyzer
manger and the thread manager puts them into his queue and takes care that
the defined number of threads is always active.

Multiple instances of the same analyzer Option sets offer a certain
number of parameters which change the result of an analysis. The graphical
user interface already gives the user the possibility to start a special analysis
twice or more with changed parameters. This behavior is implemented in the
textual interface too. If an analysis should be performed twice the parameters
just have to be stated twice .

. . . −−ana lyze=RG; backEdges=1; −−ana lyze=RG; backEdges=0; . . .

The parameter parser does not care how often a special –analyze parameter
is called. The only thing that counts is the correct syntax.

12.3 Class structure of the textual interface

The realization of the textual interface only needed one extra class and about
10 additional methods in existing classes. The new analyzer system proved
its simple extendability. The new class for using parameters provided by the
console is Charlie.Charlie (Figure 27).

Figure 27: Class structure for class Charlie.Charlie.

www.manaraa.com

12 THE TEXTUAL INTERFACE 70

Surely the textual interface needs to know all analyzers and their option sets
as well as the corresponding result objects.

The initialize method just calls register on all special analyzers, then they
wait for work. The start method first extracts the fix parameters for the net file,
output file and the processing method (sequential/parallel), then the parameter
string is split into smaller strings by using the StringTokenizer class provided
by java,util. Using this class the pattern “–” splits the parameter string. So all
parameters for an analyzer are now available in this small string.

Then the analyze parameter is evaluated and the correct OptionSet object is
returned by getOptionSet(...). After some additional checks and setup actions
the option set is either placed in the ArrayList setList or placed in the nextStage
member variable of the previous option set object. This decision is made by
evaluating the sequential variable. If sequential is true then the nextStage object
is used. To start the analyses a call to AnalyzerManager.compute(...) has to be
performed, once if sequential is true using the first option set which was created
or one call for each element of the setList. Then the start method puts the
main thread to sleep and checks temporarily if the last analysis has finished. If
the thread would continue the main method of Charlie would be left before the
analyzers could complete their work.

Here the variable waitCount helps to determine when to stop sleeping and
store the output to a file or display the output. If the sequential mode has been
selected, AnalyzerManager only calls the initiator class once, so waitCount is set
to 1 in this case. If the parallel execution mode is set, then the AnalyzerManager
calls Charlie.analyzerHasFinished(...) every time an analyzer finishes his work.
So waitCount is equal to the length of the setList which holds all option sets.

The help method uses the text file help.txt to display hints for the usage of
Charlie. By using a file, the text may be easily modified without needing to
change code.

12.4 Examples

Here some examples are presented to get more familiar with the syntax.

// c r e a t e the r e a c h ab i l i t y graph and c a l c u l a t e use stubborn
reduct ion

java −cp Char l i e . j a r Char l i e . Char l i e −−n e t f i l e=t r a v e l . apnn ; −−

analyze=RG; stubborn=1;
// c a l c u l a t e the r e a c h ab i l i t y graph us ing the maximum f i r e

ru l e
java −cp Char l i e . j a r Char l i e . Char l i e −−n e t f i l e=t r a v e l . apnn ; −−

analyze=RG; ru l e=MAXIMUM;
// c a l c u l a t e t rap s and proper s e t s
java −cp Char l i e . j a r Char l i e . Char l i e −−n e t f i l e=t r a v e l . apnn ; −−

analyze=Trap ; p roperSet s=1;
// c a l c u l a t e dead locks and check the dtp property
java −cp Char l i e . j a r Char l i e . Char l i e −−n e t f i l e=t r a v e l . apnn ; −−

analyze=Deadlock ; computeDTP=1;

www.manaraa.com

12 THE TEXTUAL INTERFACE 71

// c a l c u l a t e the r e a c h ab i l i t y graph and s t o r e the output to
log . txt

java −cp Char l i e . j a r Char l i e . Char l i e −−n e t f i l e=t r a v e l . apnn ; −−

ou t p u t f i l e=log . txt −−s equ en t i a l =0; −−analyze=RG;

12.5 Overview over the option sets and their parameters

In this part the implemented option sets are examined for their variables

DeadlockOptions

variable with initial value comment

compute = false; compute is always set to true by
initializeByString()

ignored if passed as parameter
export = false; the export into a file is enabled, this

value is automatically set if the
exportFile could be set

ignored if passed as parameter
properSets = false; is set to true if the proper sets need to

be computed
computeDtp = false; if set to true, the DTP property is

checked
exportFile = null; a file handler for the export file is

created

TrapOptions

variable with initial value comment

compute = false; compute is always set to true by
initializeByString()
ignored if passed as parameter

export = false; the export into a file is enabled, this
value is automatically set if the
exportFile could be set
ignored if passed as parameter

properSets = false; is set to true if the proper sets need to
be computed

exportFile = null; a file handler for the export file is
created

DependentSetOptions

www.manaraa.com

12 THE TEXTUAL INTERFACE 72

variable with initial value comment

decompose = false; decompose dependent sets
sdsFile= ""; the file name for strong dependent sets
adsFile = ""; the file name for abstract dependent

sets
adsConFile= ""; the file name for connected abstract

dependent sets
sds = true; if set to true strong dependent sets are

computed
ads = true; if set to true abstract dependent sets

are computed

ConstructionOptions

variable with initial value comment

rule = SIMPLE; Here the fire rule is determined.
boundedness = true; check the boundedness of a net

maxDepth =0; the maximum depth the reachability
graph is constructed

completed = true; not used for parameters
stubborn = false; if set to true stubborn reduction is

used
backEdges = true; if set to true the back edges are stored

too

InvOptions

variable with initial value comment

transitions = true; Here the fire rule is determined.
deleteTrivial = false; deletion of trivial invariants

coverage = true; check if the net is covered with
invariants

extendedCoverage= true; check extended coverage of the net
enableMCSC= false; not used

exportFile= ""; the export file for the invariants

StructuralOptions – This option set owns no parameters.

Each option name is translated exactly as parameter name, so the variable
exportFile is reflected in the parameter exportFile=...; .

12.6 Summary

The textual interface is realized by installing only one new class which makes
use of the existing structures.

The interface offers a simple but powerful way to access analyses from the
command line. The analyzer system is used to create a batch-like way of process-

www.manaraa.com

12 THE TEXTUAL INTERFACE 73

ing analyses and the user can switch between sequential or parallel processing.
The initialization of the option sets is integrated into them, so the tasks are done
where the knowledge is. The rather strict rules for the syntax do not handicap
a comfortable use, but make extraction of parameter values easier.

www.manaraa.com

74

Part V

Summary

The new Charlie version is now ready for the future. Today not every (small)
feature of the original version is integrated into the new version, because some
are extended parallel to this work and others will be replaced by more powerful
versions. The implementation of the textual interface was the last task that
was done, so the new structure had to prove itself in this first test. I would
say that the structure passed this test very good. Except from a new class and
few methods, which are only needed for the textual interface nothing had to be
touched in existing classes. The analyzer manager and thread manager worked
independently from any GUI elements and were easy to access.

The work produced a guideline how to implement an additional module or
analyzer in Charlie. Together with my study work [AF2008] the system of
classes is explained to the programmer.

The user also benefits from the applied changes, a better looking user inter-
face which also is more user friendly and additional features which enable more
opportunities.

www.manaraa.com

75

Part VI

Appendices

www.manaraa.com

13 APPENDIX A - UTILITY CLASSES 76

13 Appendix A - Utility classes

During the implementation a small set of utility classes were created, which
perform often repeated operations or realize special user interface components.
Since Charlie is still enhanced and further analyzers are being developed, these
classes might help to create the user interface for the new analyzers.

package GUI.util

Align.java This class provides a single method alignToParentWindow(JFrame
parent , JFrame child), which aligns the child frame next to the
parent frame. If a module uses a frame next to the small dialog in
the main window, this frame can be simply aligned next to the main
windows by calling this method.

ElapsedTime.java This class offers a delayed update to a JLabel. The time is
updated using a timer and SwingUtilities.invokeLater() so that the
update is made using the AWT event dispatching thread.

ExportFileAction.java This class implements the class AbstractAction and is
used by the class ExportJCheckBoxMenuItem, to realize the reac-
tion on the press of a button. Then a file chooser is displayed and
the selected file can be retrieved.

ExportJCheckBoxMenuItem.java This GUI element offers a check box and a
label which can be added to menus. If the menu item is clicked a
file chooser appears using ExportFileAction. The user can define a
suggested file name, which is automatically set to the file chooser so
that if the user is satisfied with the name and directory of the file,
he only needs to press “o.k.”.

FileDisplayDialog.java If an output is created or stored to text file and needs
to be displayed in the user interface, this class can be passed a file
handler or a string and then a dialog window is displayed at the
position of the mouse pointer. The class handles the reading of the
file.

HTML.java If the application needs to read HTML files or store output which
is presented as HTML page (e.g. the GUI generator output) then
this class offers static methods which store an object of the type
java.swing.text.html.HTMLDocument as HTML or text file and also
converts a string that contains HTML tags or a HTMLDocument to
a simple text without the HTML tags.

Html2Text.java Here HTMLEditorKit.ParserCallback is implemented, so han-
dler methods for the occurrence of starting or ending tags are im-
plemented, the tags are then replaced by white space or line breaks.

www.manaraa.com

13 APPENDIX A - UTILITY CLASSES 77

JComboBoxDelete.java If the user wants to remove an item from a combo box
he normally has no possibility to do so. This class enables the combo
box to remove the selected item by pressing the ’del’ or ’entf’ key on
the keyboard or pressing the right mouse button and select remove
item from the appearing pop up menu. The order of removing the
item is then passed to the associated combo box model.

MultiLineToolTip.java Normally the system decides when to end a line and
start a new one. If the user wants more control of the tooltips of
components, he can choose to use MultiLineToolTip. This class
takes the provided string and searches for line breaks, then each line
is wrapped into a pair of p-tags and the first line is automatically
painted bold.

MyButton.java The assignment of images to a button normally involves multi-
ple steps. This class offers to create a button that uses an image and
optionally a roll-over-image only by providing the path to the image
files as string. A tooltip text can also be passed. The handling of
mouse entered or mouse left events is completely done by the class.

The only method the user must implement is the mouseClicked(...)
method, which handles the actions taken when the mouse button is
clicked inside the image. The buttons in the thread panel are created
this way. The following listing shows how simple it is to instantiate
such a button.

1 startPauseButton= new MyButton (" r e s ou r c e s / tp/ play . jpg
" , " play /pause") {

2 public void mouseClicked (MouseEvent e) {
3 setStatusPaused () ;
4 }
5 } ;

MyMouseWheelListener.java The use of the mouse wheel offers quick scrolling
or changing values without having to press the mouse button very
often. So this class can be applied to the following user inter-
face components: javax.swing.JSpinner, javax.swing.JSlider, javax.-
swing.JComboBox, GUI.dialog.DialogPanel.

The implemented mouseWheelMoved(...) method checks the type
of the source by using the instanceof keyword and then calls the ap-
propriate method for the component.The constructor of the listener
offers to provide a value by which the value of the component model
is decremented or incremented. This class can be extended to ap-
ply this behavior to other components too. Then a new method for
the component should be introduced and the mouseWheelMoved(...)
method should get a new check for the desired component type.

PropertyIo.java Properties are used by the application and some modules to
store the current state in a file and to remember settings that have

www.manaraa.com

13 APPENDIX A - UTILITY CLASSES 78

been applied by the user. An example would be the last file that
was opened or the maximum number of loaded tools in the GUI
generator. These values are assigned to a java.util.Property object
and associated with a key string. This class offers to load or store
property objects. The methods are declared as static and therefore
no instantiation of PropertyIo is needed. The creation of readers
and writers is done by the class so the user is freed from this tasks.

StringHashMap.java a hash map originally uses keys to identify an object that
is associated with this key. If strings are used as key objects the
string a = “A” and the string b=”A” are different keys to the hash
map because they are different objects. But if the contents of the
string is equal the associated object can be identified by using the
contents and not the object itself.

XMLReader.java To parse a XML file and get a XML document object, several
steps need to be taken XMLReader offers the static method read-
XmlFile(...), which only needs a file object and then performs the
reading process. An object of the type org.w3c.dom.Document is
returned and can be traversed using the XML node structure. If
an empty XML document object needs to be created the method
createNewXmlDocument() can be used.

XMLWriter.java If the gui generator needs to update a XML description for a
tool, because the location of tool binary has changed, then the XML
document object is updated and stored to a file. The static method
writeToXmlFile(...) can be used for this.

FileSaver.java If a file needs to be loaded or stored, the user may be informed
if he tries to overwrite a file or if the file he wants to open does not
exists.

If the user wants to save a file and the file is already existing, then
a message is displayed “Do you want to overwrite...?”. If the user
accepts the dialog is closed an the selected file is returned. If he
does not want to overwrite, the dialog appears again and the user
may change the file name or directory or abort the whole process.

If the user wants to open a file, the file should exist, if not the file
chooser appears again and the user can change the file name.

This behavior would have to be implemented every time a file chooser
is needed to open or save a file. Within Charlie several open/save
operations can be taken so this class saves a lot of additional code.
The use of the file saver is very easy too, as the following listing
shows. Only two lines of code, combined with a check are enough
to use this class.

The text parameter in showSaveDialog can be left empty or null,
the FileSaver then offers a standard text for the overwrite question.

www.manaraa.com

13 APPENDIX A - UTILITY CLASSES 79

The extension for the file may be defined too and is automatically
appended to the created file handle if the user did not supply a
different extension.

1 // ge t a f i l e handle f o r opening using Fi l eSaver .
showOpenDialog ()

2 F i l eSaver f s = new Fi l eSaver () ;
3 F i l e openFi le = f s . showOpenDialog(null ,
4 new Fi leNameExtens ionFi l ter ("app−s e s s i o n ␣ f i l e " , " .

app_session ")) ;
5 i f (openFi le != null) {
6 // the user s e l e c t e d a f i l e to open and did not

abor t
7 . . .
8 }
9
10 // ge t f i l e handle f o r sav ing using Fi l eSaver .

showSaveDialog ()
11 F i l eSaver f s = new Fi l eSaver () ;
12 F i l e s av eF i l e = f s . showSaveDialog (null ,
13 "Do␣you␣want␣ to ␣ overwr i t e ␣ t h i s ␣ f i l e " ,
14 " app_session ") ;
15 i f (s av eF i l e != null) {
16 // the user s e l e c t e d a f i l e to save and did not

abor t
17 . . .
18 }

package GUI.debug

DebugCounter.java When developing a program, often output to the console
is generated to check the value of objects or display warnings and
messages. DebugCounter offers a convenient way to capture these
messages and store them into a log file. So the developer can provide
help if something goes wrong.

The output is listed with numbers and continually stored until the
defined maximum log file size is reached, then the contents is cleared.
If the user should not see all the output but the creation of the file is
needed though, the value of DebugCounter.printImmediately can be
set to false. Then the output is captured and stored but not printed
to the system console. If larger or smaller sizes of the log file are
needed the maximum file size can be set by changing the value of
DebugCounter.maxLogFileSize. Both variables are static as well as
the methods of DebugCounter.

1 // use o f DebugCounter . inc
2 DebugCounter . in c (" Class . method () : ␣Warning␣message␣

f i l e ␣does ␣not␣ e x i s t " + f i l e . getName ()) ;

www.manaraa.com

13 APPENDIX A - UTILITY CLASSES 80

3 // wr i te the l o g to a f i l e
4 DebugCounter . wr i t eToFi l e (new F i l e ("Char l ie_log . txt "))

;
5 // preven t output to the conso l e
6 DebugCounter . pr int Immediate ly= fa l se ;
7 // s e t the l o g f i l e s i z e to 1 MB
8 DebugCounter . maxLogFileSize = 1000000;

www.manaraa.com

14 APPENDIX B 81

14 Appendix B

The relevant lines for deduction of rules in the source code of Charlie/pn/Ana-
lyzer.java.

001 package Char l i e . pn ;
. . .
053 i f (! pn . f t 0 . isEmpty ()) {
054 r e s u l t s . addResult (r e s u l t s .B,new Resu lt (fa l se)) ;
055 Out . p r i n t l n (" input␣ t r a n s i t i o n s : \ n"+pn . f t 0) ;
056 r e s u l t s . addResult (r e s u l t s . SB,new Resu lt (fa l se)) ;
057 r e s u l t s . addResult (r e s u l t s . S ,new Resu lt (fa l se)) ;
058 }
. . .
076 i f (pn . i sCon s e r v a t i v e ()) {
077 r e s u l t s . addResult (r e s u l t s .CSV,new Resu lt (true)) ;
078 r e s u l t s . addResult (r e s u l t s . SB,new Resu lt (true)) ;
079 r e s u l t s . addResult (r e s u l t s .B,new Resu lt (true)) ;
080 } else{
081 r e s u l t s . addResult (r e s u l t s .CSV,new Resu lt (fa l se)) ;
082 }
. . .
114 public void determineNetClass () {
115 i f (pn . isSM ()) {
116 r e s u l t s . addResult (r e s u l t s .NC,new Resu lt ("SM")) ;
117 r e s u l t s . addResult (r e s u l t s . SB,new Resu lt (true)) ;
118 r e s u l t s . addResult (r e s u l t s .B,new Resu lt (true)) ;
119 } else i f (pn . isMG ()) {
120 r e s u l t s . addResult (r e s u l t s .NC,new Resu lt ("SG")) ;
121 } else{
. . .
209 public synchronized InvAnalyzer ev a l I nv a r i an t s (InvAnalyzer

i a) {
. . .
213 SparseMatrix sm = null ;
214 sm = ia . i n v a r i an t s () ;
215 inva r i an t s = sm . rows () ;
216 i f (i a . getCoveragOption ()) {
217 i f (i a . i sCovered (sm)) {
218
219 i f (i a . getOptions () . t r a n s i t i o n s) {
220 r e s u l t s . addResult (r e s u l t s .CTI ,

new Resu lt (new Boolean (true))) ;
221 } else{
222 r e s u l t s . addResult (r e s u l t s . CPI ,

new Resu lt (new Boolean (true))) ;
223 r e s u l t s . addResult (r e s u l t s . SB,

new Resu lt (true)) ;
224 r e s u l t s . addResult (r e s u l t s .B,

new Resu lt (true)) ;

www.manaraa.com

14 APPENDIX B 82

225 }
226 } else{
. . .
439 public boolean hasDTP(DeadlockAnalyzer da) {
440 boolean r e t = da . checkDTP() ;
. . .
443 i f (r e t && pn . homogenous && pn .hasNBM()) {
444 r e s u l t s . addResult (r e s u l t s .DST,new Resu lt (fa l se)) ;
445 i f (! isNotExtendedSimple ()) {//&& ! isMarkedGraph ())

{
. . .
448 s e tL i v e (true) ;
449 }
450 } else i f (! r e t) {
451 i f (i sFreeCho ice () | |

isExtendedFreeChoice () | |
i sStateMachine () | |
isMarkedGraph ()) {

452 // r e s u l t s . addResu l t (r e s u l t s .L ,
new Resu lt (fa l se)) ;

453 s e tL i v e (fa l se) ;
454 }
455 }
456 r e s u l t s . addResult (r e s u l t s .DTP,new Resu lt (r e t)) ;
457
458 return r e t ;
459 }
. . .

www.manaraa.com

REFERENCES 83

References

[AF2008] Andreas Franzke – “Concept for redesigning Charlie”, Study Project,
BTU Cottbus, CS Dep., 2008.

[AF2009] Ansgar Fischer – “Analysis of timed Petri nets using reachability
graphs”, Diploma Thesis, BTU Cottbus, CS Dep., 2009.

[BSB2008] Christoph Bommer, Markus Spindler, Volker Barr – Software-
Wartung, dpunkt Verlag, 2008.

[Charlie] Martin Schwarick – Charlie - A software tool to analyse Petri
nets, BTU Cottbus, CS Dep., http://www-dssz.informatik.tu-
cottbus.de/software/charlie.html.

[GIMP] GIMP, GNU Image Manipulation Program, http://www.gimp.org.

[GS2002] Gernot Starke – Effektive Software-Architekturen, Carl Hanser Ver-
lag, 2002.

[IW1998] Ivo Wessel – GUI-Design Richtlinien zur Gestaltung ergonomischer
Windows Applikationen, Carl Hanser Verlag, 1998.

[JDOC] F. Allimant – Java 2SE 6 Documentation (HTML help version)
http://www.allimant.org/javadoc/index.php.

[LYX] Lyx – The document processor http://www.lyx.org.

[MH2007] Prof. Dr.-Ing. Monika Heiner – slides from the lecture “dependabil-
ity engineering & Petri nets”, pn06_structuralProperties.sld2.pdf
“structural Petri net analysis”, January 2007.

[MS2006] Martin Schwarick – “A software to to analyse Petri net models’,
Master Thesis, BTU Cottbus, CS Dep., 2006.

[Notepad++] Editor Notepad++, http://notepad-plus.sourceforge.net/.

[SLOCcount] David A. Wheeler – Source, SLOCcount - a tool for counting the
source lines of code, http://www.dwheeler.com/sloccount/.

[SNOOPY] Snoopy – a software tool to design and animate hierarchical graphs,
among others Petri nets, BTU Cottbus, CS Dep., http://www-
dssz.informatik.tu-cottbus.de/software/snoopy.html.

[TableLayout] TableLayout – a free layout manager,
https://tablelayout.dev.java.net/.

